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In analogy to f (R) theory, recently a new modified gravity theory, namely the so-called f (T ) theory,
has been proposed to drive the current accelerated expansion without invoking dark energy. In the
present work, by extending Bisabr’s idea, we try to constrain f (T ) theories with the varying fine structure
“constant”, α ≡ e2/h̄c. We find that the constraints on f (T ) theories from the observational �α/α data
are very severe. In fact, they make f (T ) theories almost indistinguishable from �CDM model.
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1. Introduction

The current accelerated expansion of our universe [1] has been
one of the most active fields in modern cosmology since its dis-
covery in 1998. This mysterious phenomenon could be due to an
unknown energy component (dark energy) or a modification to
general relativity (modified gravity) [1–4]. The well-known mod-
ified gravity theories are, for examples, f (R) theory, scalar-tensor
theory (including Brans–Dicke theory), braneworld scenarios (such
as DGP, RSI and RSII), f (G) theory (G is the Gauss–Bonett term),
Horava–Lifshitz theory, MOND and TeVeS theories. We refer to e.g.
[1–4,49] for some reviews.

Recently, a new modified gravity theory, namely the so-called
f (T ) theory, attracted much attention in the community, where
T is the torsion scalar. It is a generalized version of the so-called
teleparallel gravity originally proposed by Einstein [5,6]. In telepar-
allel gravity, the Weitzenböck connection is used, rather than the
Levi-Civita connection which is used in general relativity. Follow-
ing [7,8], here we briefly review the key ingredients of teleparallel
gravity and f (T ) theory. We consider a spatially flat Friedmann–
Robertson–Walker (FRW) universe whose spacetime is described
by

ds2 = −dt2 + a2(t)dx2, (1)

where a is the scale factor. The orthonormal tetrad components
ei(xμ) relate to the metric through

gμν = ηi je
i
μe j

ν, (2)
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where Latin i, j are indices running over 0, 1, 2, 3 for the tangent
space of the manifold, and Greek μ, ν are the coordinate indices
on the manifold, also running over 0, 1, 2, 3. In teleparallel gravity,
the gravitational action is

ST = 1

2κ2

∫
d4x |e|T , (3)

where κ2 ≡ 8πG , and |e| = det(ei
μ) = √−g . The torsion scalar T

is given by

T ≡ Sρ
μν T ρ

μν, (4)

where

T ρ
μν ≡ −eρ

i

(
∂μei

ν − ∂νei
μ

)
, (5)

Kμν
ρ ≡ −1

2

(
μννμ

ρ − TρT μν
ρ − T

)
, (6)

Sρ
μν ≡ 1

2

(
Kμν

ρ + δ
μ
ρ T θν

θ − δν
ρ T θμ

θ

)
. (7)

For a spatially flat FRW universe, from Eqs. (4) and (1), one has

T = −6H2, (8)

a/a is the Hubble parameter (a dot denotes the deriva-where H ≡ ˙
tive with respect to cosmic time t). So, one can use T and H
interchangeably. In analogy to f (R) theory, one can replace T in
the gravitational action (3) by a function f (T ).1 In f (T ) theory,

1 In the literature, one can instead write this function as T + f (T ), rather than
f (T ) used here. One should be aware of the correspondence between these two
formalisms.
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the modified Friedmann equation and Raychaudhuri equation are
given by [7,8]

12H2 f T + f = 16πGρ, (9)

48H2 f T T Ḣ − f T
(
12H2 + 4Ḣ

) − f = 16πGp, (10)

where f T ≡ ∂ f /∂T , and ρ , p are the total energy density and pres-
sure, respectively. In an universe with only dust matter, p = pm = 0
and ρ = ρm . From Eqs. (9) and (10), one can find that the effective
dark energy density and pressure from torsion are given by [7–9]

ρde = 1

16πG

(
6H2 − f − 12H2 f T

)
, (11)

pde = −ρde − 1

4πG

(
12H2 f T T − f T + 1

)
Ḣ . (12)

Obviously, if f (T ) = T + const, f (T ) theory reduces to the well-
known �CDM model.

In fact, f (T ) theory was firstly used to drive inflation by Fer-
raro and Fiorini [10,11]. Later, Bengochea and Ferraro [7], as well as
Linder [8], proposed to use f (T ) theory to drive the current accel-
erated expansion without invoking dark energy. Soon, many works
followed. For examples, Myrzakulov [12] and Yang [13] proposed
some new f (T ) forms; Bengochea [14], Wu and Yu [15] considered
the cosmological constraints on f (T ) theories by using the latest
observational data; Wu and Yu [16] also considered the dynam-
ical behavior of f (T ) theory; Dent et al. [17], Zheng and Huang
[18] considered the cosmological perturbations and growth factor
in f (T ) theories; Wu and Yu [19], Bamba and Geng [20] discussed
the equation-of-state parameter (EoS) crossing the phantom divide
in f (T ) theories; Zhang et al. [21] discussed the dynamical anal-
ysis of f (T ) theories; Li, Sotiriou and Barrow [22] considered the
large-scale structure and local Lorentz invariance in f (T ) theory;
Deliduman and Yapiskan [23] discussed the relativistic neutron star
in f (T ) theory; Cai et al. [24] considered the matter bounce in
f (T ) theory; Wang [25] discussed the static solutions with spher-
ical symmetry in f (T ) theories. We further refer to e.g. [26] for
some relevant works.

In the literature, the observational constraints on f (T ) theories
[14,15] were obtained mainly by using the cosmological data, such
as type Ia supernovae (SNIa), baryon acoustic oscillation (BAO), and
cosmic microwave background (CMB). In the present work, we in-
stead try to constrain f (T ) theories with the varying fine structure
“constant”, α ≡ e2/h̄c. In Section 2, we briefly review the observa-
tional constraints on the temporal variation of the fine structure
“constant” α. In Section 3, we briefly introduce the idea to con-
strain f (R) theories with the varying α, which was proposed by
Bisabr [27]. In Section 4, we extend Bisabr’s idea to f (T ) theo-
ries, and consider the corresponding constraints from the temporal
variation of the fine structure “constant”. Finally, some brief con-
cluding remarks are given in Section 5.

2. Observational constraints on the temporal variation of the fine
structure “constant”

Motivated by the well-known large number hypothesis of Dirac
proposed in 1937 [28], the varying fundamental “constants” re-
main as one of the unfading subjects for decades. Among the fun-
damental “constants”, the most observationally sensitive one is the
electromagnetic fine structure “constant”, α ≡ e2/h̄c. Since about
12 years ago, this subject attracted many attentions, mainly due to
the first observational evidence from the quasar absorption spectra
that the fine structure “constant” might change with cosmological
time [29,30].
Subsequently, many authors obtained various observational
constraints on the temporal variation of the fine structure “con-
stant” α. In the literature, it is convenient to introduce a quan-
tity �α/α ≡ (α − α0)/α0, where the subscript “0” indicates the
present value of the corresponding quantity. Obviously, �α/α is
time-dependent. A brief summary of the observational constraints
on �α/α can be found in e.g. [31]. The most ancient constraint
comes from the Big Bang Nucleosynthesis (BBN) [32,33], namely,
|�α/α| � 10−2, in the redshift range z = 1010–108. The next
constraint comes from the power spectrum of anisotropy in the
cosmic microwave background (CMB) [33], i.e., |�α/α| < 10−2,
for redshift z � 103. In the medium redshift range, the constraint
comes from the absorption spectra of distant quasars [29,30,34,35].
Since the results in the literature are controversial, it is better to
consider the conservative constraint |�α/α| � 10−6 [31], in the
redshift range z = 3–0.4. From the radioactive life-time of 187Re
derived from meteoritic studies [36], the constraint is given by
|�α/α| � 10−7 for redshift z = 0.45. Finally, from the Oklo natural
nuclear reactor [37], it is found that |�α/α| � 10−7 for redshift
z = 0.14. For convenience, we summarize the above constraints in
Table 1, which will be used in the followings.

3. The idea to constrain f (R) theories with varying alpha

3.1. Varying alpha driven by a general scalar field

Noting that α = e2/h̄c, a varying α might be due to a vary-
ing speed of light c [38–40], while Lorentz invariance is broken.
The other possibility for a varying α is due to a varying electron
charge e. In 1982, Bekenstein proposed such a varying α model
[41], which preserves local gauge and Lorentz invariance, and is
generally covariant. This model has been revived and generalized
after the first observational evidence of varying α from the quasar
absorption spectra [29,30]. This is a dilaton theory with coupling to
the electromagnetic F 2 part of the Lagrangian, but not to the other
gauge fields. Later, the Bekenstein-type varying α model has been
generalized by replacing the dilaton with a cosmological scalar
field. Further, the coupling between the scalar field and the elec-
tromagnetic field could also be generalized. In fact, the varying
α models driven by quintessence have been extensively investi-
gated in the literature (see e.g. [31,42–45]). The varying α driven
by phantom has been considered in the BSBM model [46] while
its model parameter ω is negative. The special case of varying α
driven by k-essence whose Lagrangian L(X, φ) = Xn − V (φ) has
been considered in e.g. [42]. The varying α driven by Dirac–Born–
Infeld scalar field has also been discussed in [47].

Following [31,42,44], the relevant action in Einstein frame is
generally given by

S = S g +
∫

d4x
√−gLφ − 1

4

∫
d4x

√−g B F (φ)Fμν F μν + Sm,

(13)

where S g is the gravitational action in Einstein frame; Fμν are the
components of the electromagnetic field tensor; Sm is the action
of other matters; Lφ is the Lagrangian of the scalar field φ. Noting
that B F takes the place of e−2 in Eq. (13) actually [43,48], one can
easily see that the effective fine structure “constant” α = e2/h̄c is
given by [31,42]

α = α0

B F (φ(x, t))
. (14)

Thus, we find that

�α ≡ α − α0 = 1 − 1. (15)

α α0 B F (φ)
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It is worth noting that the present value (at redshift z = 0) of the
coupling B F should be 1 by definition. If B F (z = 0) = B F 0 �= 1,
we can normalize it through rescaling the electromagnetic field,
namely

Fμν → √
B F 0 Fμν, while B F → B F

B F 0
. (16)

Thus, we have

�α

α
= B F 0

B F
− 1. (17)

3.2. Varying alpha in f (R) theories

Following Bisabr’s idea [27], here we briefly show why the fine
structure “constant” should be varying in f (R) theories. As is well
known, in Jordan frame the action of f (R) theories with matters
(including electromagnetic fields here) reads (see e.g. [2–4])

S = 1

2κ2

∫
d4x

√−g f (R) +
∫

d4x LM(gμν,ΨM), (18)

where R is the Ricci scalar, and LM is the matter Lagrangian de-
pending on gμν and matter fields ΨM (including electromagnetic
fields here). It is well known that f (R) theory can be equivalent to
scalar-tensor theory [2–4]. Applying the conformal transformation

g̃μν = Ω2 gμν, Ω2 = F ≡ f R = ∂ f

∂ R
, (19)

and introducing a new scalar field φ defined by

κφ ≡ √
3/2 ln F , (20)

one can rewrite the action (18) to the one in Einstein frame [2–4],
namely

S̃ =
∫

d4x
√

−g̃

[
R̃

2κ2
− 1

2
g̃μν∂μφ∂νφ − V (φ)

]

+
∫

d4x LM
(

F −1(φ)g̃μν,ΨM
)
, (21)

where a tilde denotes quantities in Einstein frame, and the poten-
tial of scalar field is given by

V (φ) = F R − f

2κ2 F 2
. (22)

From Eq. (21), it is easy to see that the matter fields (including
electromagnetic fields here) are inevitably coupled with the scalar
field φ in Einstein frame. So, α should be varying. Noting that√−g = Ω−4

√−g̃ , one can easily find that the coupling in Eq. (13)
is given by [27]

B F = F −2 = f −2
R . (23)

From Eq. (15), the variation of the fine structure “constant” can be
described by [27]

�α

α
= f 2

R − 1. (24)

As mentioned above, if f R(z = 0) = f R0 �= 1, we can normalize it
through Eq. (16), and then

�α

α
=

(
f R

f R0

)2

− 1. (25)

In [27], Bisabr discussed the observational constraints on f (R) the-
ories with the temporal variation of the fine structure “constant”,
and found that the corresponding constraints are fairly tight. We
refer to the original paper [27] for details.
4. f (T ) theories and varying alpha

As mentioned in Section 1, f (T ) theories are proposed in anal-
ogy to f (R) theories. So, we extend Bisabr’s idea [27] to constrain
f (T ) theories also with the temporal variation of the fine structure
“constant”.

4.1. Varying alpha in a general f (T ) theory

As mentioned in [8,9], f (T ) theory can also be equivalent to
scalar-tensor (torsion) theory. In Jordan frame, the relevant action
with matters (including electromagnetic fields here) reads

S = 1

2κ2

∫
d4x |e| f (T ) +

∫
d4x LM

(
ei
μ,ΨM

)
. (26)

Similarly, applying the conformal transformation

g̃μν = Ω2 gμν ↔ ẽi
μ = �ei

μ, Ω2 = F ≡ f T , (27)

one can also rewrite the action (26) to the one in Einstein frame
with a new scalar field φ [8,9]. Similar to the case of f (R) theories,
the matter action in Einstein frame is given by [9]

S̃M =
∫

d4x LM
(

F −1/2(φ)ẽi
μ,ΨM

)
. (28)

Again, the matter fields (including electromagnetic fields here) are
inevitably coupled with the scalar field φ in Einstein frame. So, α
should be varying. Noting that |e| = Ω−4|ẽ|, one can similarly find
that

B F = F −2 = f −2
T . (29)

From Eq. (15), the variation of the fine structure “constant” can be
described by

�α

α
= f 2

T − 1. (30)

As mentioned above, if f T (z = 0) = f T 0 �= 1, we can normalize it
through Eq. (16), and then

�α

α
=

(
f T

f T 0

)2

− 1. (31)

In the followings, we will consider two concrete f (T ) theories,
namely, f (T ) = T +μ(−T )n and f (T ) = T −μT (1−eβT0/T ), which
are the most popular f (T ) theories discussed extensively in the
literature (see e.g. [7,8,15,16]).

4.2. f (T ) = T + μ(−T )n

At first, we consider the case of f (T ) = T + μ(−T )n , where μ
and n are both constants. This is the simplest model, and has been
considered in most papers on f (T ) theory. Obviously, if n = 0, it
reduces to �CDM model. Substituting it into the modified Fried-
mann equation (9), one can easily find that μ is not an indepen-
dent model parameter, namely [8,15]

μ = 1 − Ωm0

2n − 1

(
6H2

0

)1−n = 1 − Ωm0

2n − 1
(−T0)

1−n, (32)

where Ωm0 ≡ 8πGρm0/(3H2
0) is the present fractional energy den-

sity of dust matter. So, we have

f (T ) = T + 1 − Ωm0

2n − 1
(−T0)

(
T

T0

)n

, (33)

and then

f T = 1 + n(1 − Ωm0)
E2(n−1), f T 0 = 1 + n(1 − Ωm0)

, (34)

1 − 2n 1 − 2n
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Fig. 1. log |�α/α| as a function of redshift z for f (T ) = T + μ(−T )n with Ωm0 = 0.272 and n = 0.04 (solid curve), Ωm0 = 0.272 and n = 0.26 (thick long-dashed curve),
Ωm0 = 0.272 and n = −0.29 (thick short-dashed curve), Ωm0 = 0.240 and n = 0.04 (thin long-dashed curve), Ωm0 = 0.308 and n = 0.04 (thin short-dashed curve). Right
panel is an enlarged part of left panel. Only the curves not overlapping the gray areas are phenomenologically viable. See text for details.
Table 1
The observational constraints on �α/α.

|�α/α| Redshift Observation Ref.

� 10−2 1010–108 BBN [32,33]
< 10−2 103 CMB [33]
� 10−6 3–0.4 quasars [29,30,34,35]
� 10−7 0.45 meteorite [36]
� 10−7 0.14 Oklo [37]

where E2 = T /T0 = H2/H2
0. Substituting Eq. (34) into Eq. (31),

one can finally obtain the explicit expression of �α/α. In order
to compare it with the observational data, we need to know E(z)
as a function of redshift z. Substituting f (T ) = T + μ(−T )n and
Eq. (32) into the modified Friedmann equation (9), we find that

E2 = Ωm0(1 + z)3 + (1 − Ωm0)E2n. (35)

Obviously, if n = 0, it reduces to the one of �CDM model. If Ωm0
and n are given, we can numerically solve Eq. (35) and obtain
E2(z) as a function of redshift z. Thus, �α/α is on hand.

Next, we compare �α/α with the observational data. In fact,
as shown in e.g. [31,47], the constraints from the first two rows
(at very high redshift) in Table 1 are very weak. Therefore, we
only consider the last three rows (at low redshift) in Table 1 (and
hence the radiation can be safely ignored). Note that in [15], this
f (T ) = T + μ(−T )n model has been constrained by using the lat-
est cosmological data, i.e., 557 Union2 SNIa dataset, BAO, and shift
parameter from WMAP7. The corresponding 2σ results are given
by [15]

Ωm0 = 0.272+0.036
−0.032, n = 0.04+0.22

−0.33. (36)

At first, we try to see whether �α/α with the best-fit parame-
ters of [15] and the corresponding 2σ edge can simultaneously
satisfy the observational constraints in Table 1. In Fig. 1, we plot
log |�α/α| as a function of redshift z for f (T ) = T +μ(−T )n with
Ωm0 = 0.272 and n = 0.04 (solid curve), Ωm0 = 0.272 and n =
0.26 (thick long-dashed curve), Ωm0 = 0.272 and n = −0.29 (thick
short-dashed curve), Ωm0 = 0.240 and n = 0.04 (thin long-dashed
curve), Ωm0 = 0.308 and n = 0.04 (thin short-dashed curve), where
log indicates the logarithm to base 10. Obviously, one can see
Fig. 2. log |�α/α| as a function of redshift z for f (T ) = T + μ(−T )n with a fixed
Ωm0 = 0.272, and n = ±1.8 × 10−7 (solid curve), n = ±10−6 (long-dashed curve),
n = ±10−8 (short-dashed curve). Only the curves not overlapping the gray areas are
phenomenologically viable. See text for details.

that �α/α with the best-fit parameters of [15] and the corre-
sponding 2σ edge cannot satisfy the observational constraints in
Table 1. In addition, from Fig. 1, we find that the influence from n
to �α/α is significantly larger than the one from Ωm0. Thus, fix-
ing Ωm0 = 0.272, we try various n to find in which cases all the
observational constraints in Table 1 could be simultaneously satis-
fied. From Fig. 2, it is easy to see that they can be all respected
only for

|n| � 1.8 × 10−7. (37)

This is the constraint on f (T ) = T + μ(−T )n theory from the ob-
servational �α/α data. It is a very severe constraint in fact. Noting
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Fig. 3. log |�α/α| as a function of redshift z for f (T ) = T − μT (1 − eβT0/T ) with Ωm0 = 0.272 and β = −0.02 (solid curve), Ωm0 = 0.272 and β = 0.29 (thick long-dashed
curve), Ωm0 = 0.272 and β = −0.22 (thick short-dashed curve), Ωm0 = 0.238 and β = −0.02 (thin long-dashed curve), Ωm0 = 0.308 and β = −0.02 (thin short-dashed
curve). Right panel is an enlarged part of left panel. Only the curves not overlapping the gray areas are phenomenologically viable. See text for details.
that f (T ) = T + μ(−T )n → T + const when n → 0, this f (T ) the-
ory becomes almost indistinguishable from �CDM model.

4.3. f (T ) = T − μT (1 − eβT0/T )

Here, we consider the case of f (T ) = T −μT (1−eβT0/T ), where
μ and β are both constants. Obviously, f (T ) → T + μβT0 = T +
const when β → 0, it reduces to �CDM model. Substituting it into
the modified Friedmann equation (9), one can easily find that μ is
not an independent model parameter [8,15], i.e.,

μ = 1 − Ωm0

1 − (1 − 2β)eβ
. (38)

On the other hand, it is easy to obtain

f T = 1 − μ + μ
(
1 − β/E2)eβ/E2

,

f T 0 = 1 − μ + μ(1 − β)eβ, (39)

where E2 = T /T0 = H2/H2
0. Substituting Eq. (39) into Eq. (31),

one can finally obtain the explicit expression of �α/α. In order
to compare it with the observational data, we need to know E(z)
as a function of redshift z. Substituting f (T ) = T −μT (1 − eβT0/T )

into the modified Friedmann equation (9), we find that

E2 = Ωm0(1 + z)3 + μE2
[

1 − eβ/E2 + 2

(
β

E2

)
eβ/E2

]
. (40)

If β → 0, we have μβ → 1−Ωm0 from Eq. (38), and hence Eq. (40)
reduces to the one of �CDM model. If Ωm0 and β are given, we
can numerically solve Eq. (40) and obtain E2(z) as a function of
redshift z. Thus, �α/α is on hand.

In [15], this f (T ) = T − μT (1 − eβT0/T ) model has also been
constrained by using the latest cosmological data, i.e., 557 Union2
SNIa dataset, BAO, and shift parameter from WMAP7. The corre-
sponding 2σ results are given by [15]

Ωm0 = 0.272+0.036
−0.034, β = −0.02+0.31

−0.20. (41)

Again, we try to see whether �α/α with the best-fit parameters of
[15] and the corresponding 2σ edge can simultaneously satisfy the
observational constraints in Table 1. In Fig. 3, we plot log |�α/α|
Fig. 4. log |�α/α| as a function of redshift z for f (T ) = T − μT (1 − eβT0/T ) with
a fixed Ωm0 = 0.272, and β = ±2.3 × 10−7 (solid curve), β = ±10−6 (long-dashed
curve), β = ±10−7 (short-dashed curve). Only the curves not overlapping the gray
areas are phenomenologically viable. See text for details.

as a function of redshift z for f (T ) = T − μT (1 − eβT0/T ) with
Ωm0 = 0.272 and β = −0.02 (solid curve), Ωm0 = 0.272 and β =
0.29 (thick long-dashed curve), Ωm0 = 0.272 and β = −0.22 (thick
short-dashed curve), Ωm0 = 0.238 and β = −0.02 (thin long-
dashed curve), Ωm0 = 0.308 and β = −0.02 (thin short-dashed
curve). Obviously, one can see that �α/α with the best-fit param-
eters of [15] and the corresponding 2σ edge cannot satisfy the
observational constraints in Table 1. In addition, from Fig. 3, we
find that the influence from β to �α/α is significantly larger than
the one from Ωm0. Thus, fixing Ωm0 = 0.272, we try various β

to find in which cases all the observational constraints in Table 1
could be simultaneously satisfied. From Fig. 4, it is easy to see that
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they can be all respected only for

|β| � 2.3 × 10−7. (42)

This is the constraint on f (T ) = T − μT (1 − eβT0/T ) theory from
the observational �α/α data. It is a very severe constraint in fact.
Noting that f (T ) = T − μT (1 − eβT0/T ) → T + const when β → 0,
this f (T ) theory becomes almost indistinguishable from �CDM
model.

5. Concluding remarks

In analogy to f (R) theory, recently f (T ) theory has been pro-
posed to drive the current accelerated expansion without invok-
ing dark energy. In the literature, the observational constraints
on f (T ) theories were obtained mainly by using the cosmologi-
cal data, such as type Ia supernovae (SNIa), baryon acoustic os-
cillation (BAO), and cosmic microwave background (CMB). In the
present work, by extending Bisabr’s idea [27], we instead try to
constrain f (T ) theories with the varying fine structure “constant”,
α ≡ e2/h̄c. We found that the constraints on f (T ) theories from
the observational �α/α data are very severe. In fact, they make
f (T ) theories almost indistinguishable from �CDM model.

Some remarks are in order. Firstly, in this work we only con-
sidered a spatially flat FRW universe. This is mainly motivated by
the well-known inflation scenario and the very tight observational
constraint on the spatial curvature term from WMAP7 data [50],
namely, Ωk = −0.0057+0.0067

−0.0068. Obviously, when a non-vanishing
spatial curvature term is allowed, the observational constraints on
f (T ) theories from the varying fine structure “constant” should be
relaxed, since the number of free model parameters is increased.
However, we can expect that the situation of f (T ) theories are
still not improved, due to the very narrow range of the con-
strained Ωk . For instance, even the constraints on n or β could be
greatly relaxed from O(10−7) to O(10−4) (say), the corresponding
f (T ) theories are still indistinguishable from �CDM model. Sec-
ondly, in fact the fine structure “constant” might be not only time-
dependent but also space-dependent (see e.g. [51]). Of course, the
space-dependent fine structure “constant” is still in controversy.
On the other hand, the space-dependent fine structure “constant”
might invoke an inhomogeneous scalar field φ. As is shown in Sec-
tions 3.2 and 4.1, the f (R) and f (T ) theories in a homogeneous
and isotropic FRW universe could not lead to a space-dependent
fine structure “constant”, and hence they are not constrained by
the possibly spatial variation of the fine structure “constant”. So,
in this work we only considered the time-dependent fine struc-
ture “constant” for simplicity. Thirdly, it is worth noting that f (T )

gravity does not generally preserve the local Lorentz invariance
and any theory of f (T ) gravity is always built on a local frame
which is chosen on a specific spacetime point. As consequences, it
is not always applicable for the conformal transformation in f (R)

gravity to be used in f (T ) gravity, and it is quite unclear how to
explicitly define an Einstein or a Jordan frame in f (T ) gravity. For-
tunately, we could use these conceptions in the homogenous and
isotropic FRW background which is quite a special case (we thank
the referee for pointing out this issue). Finally, we note that the
two concrete f (T ) theories considered in this work contain only
a single free parameter, which are very simple cases. In fact, it is
reminiscent of the case of f (R) theory. In the beginning, the forms
of f (R) are also very simple, such as the types of 1/R or Rn [1–4].
Later, these simple f (R) forms have been easily ruled out by the
cosmological observations and the local gravity tests. After several
years, the viable f (R) forms which can satisfy all the cosmolog-
ical observations and the local gravity tests, e.g. Hu–Sawicki [52],
Starobinsky [53] and Tsujikawa [54], have been toughly earned [1–
4]. These three viable f (R) forms are all complicated and delicate,
and they contain two or more free parameters. Similarly, we ex-
pect that the viable f (T ) forms, which satisfy all the cosmological
observations, the local gravity tests and the constraints from the
varying fine structure “constant”, could be constructed with tough
efforts in the future. Of course, it is easy to anticipate that they
are also complicated and delicate, and contain many free param-
eters. In addition, at that time it is also interesting to see what
kind of dark energy models could be mimicked by the viable f (T )

theories.
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