385 research outputs found

    Intelligent Web Services Architecture Evolution Via An Automated Learning-Based Refactoring Framework

    Full text link
    Architecture degradation can have fundamental impact on software quality and productivity, resulting in inability to support new features, increasing technical debt and leading to significant losses. While code-level refactoring is widely-studied and well supported by tools, architecture-level refactorings, such as repackaging to group related features into one component, or retrofitting files into patterns, remain to be expensive and risky. Serval domains, such as Web services, heavily depend on complex architectures to design and implement interface-level operations, provided by several companies such as FedEx, eBay, Google, Yahoo and PayPal, to the end-users. The objectives of this work are: (1) to advance our ability to support complex architecture refactoring by explicitly defining Web service anti-patterns at various levels of abstraction, (2) to enable complex refactorings by learning from user feedback and creating reusable/personalized refactoring strategies to augment intelligent designers’ interaction that will guide low-level refactoring automation with high-level abstractions, and (3) to enable intelligent architecture evolution by detecting, quantifying, prioritizing, fixing and predicting design technical debts. We proposed various approaches and tools based on intelligent computational search techniques for (a) predicting and detecting multi-level Web services antipatterns, (b) creating an interactive refactoring framework that integrates refactoring path recommendation, design-level human abstraction, and code-level refactoring automation with user feedback using interactive mutli-objective search, and (c) automatically learning reusable and personalized refactoring strategies for Web services by abstracting recurring refactoring patterns from Web service releases. Based on empirical validations performed on both large open source and industrial services from multiple providers (eBay, Amazon, FedEx and Yahoo), we found that the proposed approaches advance our understanding of the correlation and mutual impact between service antipatterns at different levels, revealing when, where and how architecture-level anti-patterns the quality of services. The interactive refactoring framework enables, based on several controlled experiments, human-based, domain-specific abstraction and high-level design to guide automated code-level atomic refactoring steps for services decompositions. The reusable refactoring strategy packages recurring refactoring activities into automatable units, improving refactoring path recommendation and further reducing time-consuming and error-prone human intervention.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/142810/1/Wang Final Dissertation.pdfDescription of Wang Final Dissertation.pdf : Dissertatio

    A Multi-Robot Cooperation Framework for Sewing Personalized Stent Grafts

    Full text link
    This paper presents a multi-robot system for manufacturing personalized medical stent grafts. The proposed system adopts a modular design, which includes: a (personalized) mandrel module, a bimanual sewing module, and a vision module. The mandrel module incorporates the personalized geometry of patients, while the bimanual sewing module adopts a learning-by-demonstration approach to transfer human hand-sewing skills to the robots. The human demonstrations were firstly observed by the vision module and then encoded using a statistical model to generate the reference motion trajectories. During autonomous robot sewing, the vision module plays the role of coordinating multi-robot collaboration. Experiment results show that the robots can adapt to generalized stent designs. The proposed system can also be used for other manipulation tasks, especially for flexible production of customized products and where bimanual or multi-robot cooperation is required.Comment: 10 pages, 12 figures, accepted by IEEE Transactions on Industrial Informatics, Key words: modularity, medical device customization, multi-robot system, robot learning, visual servoing, robot sewin

    Improving Web Services Design Quality Via Dimensionality Reduction

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/153329/1/icsoc2017fshortpaper.pd

    Interactive Refactoring of Web Service Interfaces

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/140399/1/Transaction FInal Rev 3.pd

    Reusable Prime Number Labeling Scheme for Hierarchical Data Representation in Relational Databases

    Get PDF
    Hierarchical data structures are important for many computing and information science disciplines including data mining, terrain modeling, and image analysis. There are many specialized hierarchical data management systems, but they are not always available. Alternatively, relational databases are far more common and offer superior reliability, scalability, and performance. However, relational databases cannot natively store and manage hierarchical data. Labeling schemes resolve this issue by labeling all nodes with alphanumeric strings that can be safely stored and retrieved from a database. One such scheme uses prime numbers for its labeling purposes, however the performance and space utilization of this method are not optimal. We propose a more efficient and compact version of this approach

    Early Quality of Service Prediction via Interface-level Metrics, Code-level Metrics, and Antipatterns

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/155332/1/IST___Webservices (12).pd

    EDoG: Adversarial Edge Detection For Graph Neural Networks

    Full text link
    Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks. However, recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations. Detecting these attacks is challenging due to the small magnitude of perturbation and the discrete nature of graph data. In this paper, we propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation. Specifically, we propose a novel graph generation approach combined with link prediction to detect suspicious adversarial edges. To effectively train the graph generative model, we sample several sub-graphs from the given graph data. We show that since the number of adversarial edges is usually low in practice, with low probability the sampled sub-graphs will contain adversarial edges based on the union bound. In addition, considering the strong attacks which perturb a large number of edges, we propose a set of novel features to perform outlier detection as the preprocessing for our detection. Extensive experimental results on three real-world graph datasets including a private transaction rule dataset from a major company and two types of synthetic graphs with controlled properties show that EDoG can achieve above 0.8 AUC against four state-of-the-art unseen attack strategies without requiring any knowledge about the attack type; and around 0.85 with knowledge of the attack type. EDoG significantly outperforms traditional malicious edge detection baselines. We also show that an adaptive attack with full knowledge of our detection pipeline is difficult to bypass it.Comment: Accepted by IEEE Conference on Secure and Trustworthy Machine Learning 202

    SGD: Street View Synthesis with Gaussian Splatting and Diffusion Prior

    Full text link
    Novel View Synthesis (NVS) for street scenes play a critical role in the autonomous driving simulation. The current mainstream technique to achieve it is neural rendering, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). Although thrilling progress has been made, when handling street scenes, current methods struggle to maintain rendering quality at the viewpoint that deviates significantly from the training viewpoints. This issue stems from the sparse training views captured by a fixed camera on a moving vehicle. To tackle this problem, we propose a novel approach that enhances the capacity of 3DGS by leveraging prior from a Diffusion Model along with complementary multi-modal data. Specifically, we first fine-tune a Diffusion Model by adding images from adjacent frames as condition, meanwhile exploiting depth data from LiDAR point clouds to supply additional spatial information. Then we apply the Diffusion Model to regularize the 3DGS at unseen views during training. Experimental results validate the effectiveness of our method compared with current state-of-the-art models, and demonstrate its advance in rendering images from broader views

    A new smart mobile system for chronic wound care management

    Get PDF
    Nonhealing wounds pose a major challenge in clinical medicine. Typical chronic wounds, such as diabetic foot ulcers and venous leg ulcers, have brought substantial difficulties to millions of patients around the world. The management of chronic wound care remains challenging in terms of precise wound size measurement, comprehensive wound assessment, timely wound healing monitoring, and efficient wound case management. Despite the rapid progress of digital health technologies in recent years, practical smart wound care management systems are yet to be developed. One of the main difficulties is in-depth communication and interaction with nurses and doctors throughout the complex wound care process. This paper presents a systematic approach for the user-centered design and development of a new smart mobile system for the management of chronic wound care that manages the nurse's task flow and meets the requirements for the care of different types of wounds in both clinic and hospital wards. The system evaluation and satisfaction review was carried out with a group of ten nurses from various clinical departments after using the system for over one month. The survey results demonstrated high effectiveness and usability of the smart mobile system for chronic wound care management, in contrast to the traditional pen-and-paper approach, in busy clinical contexts

    Leveraging Biases in Large Language Models: "bias-kNN'' for Effective Few-Shot Learning

    Full text link
    Large Language Models (LLMs) have shown significant promise in various applications, including zero-shot and few-shot learning. However, their performance can be hampered by inherent biases. Instead of traditionally sought methods that aim to minimize or correct these biases, this study introduces a novel methodology named ``bias-kNN''. This approach capitalizes on the biased outputs, harnessing them as primary features for kNN and supplementing with gold labels. Our comprehensive evaluations, spanning diverse domain text classification datasets and different GPT-2 model sizes, indicate the adaptability and efficacy of the ``bias-kNN'' method. Remarkably, this approach not only outperforms conventional in-context learning in few-shot scenarios but also demonstrates robustness across a spectrum of samples, templates and verbalizers. This study, therefore, presents a unique perspective on harnessing biases, transforming them into assets for enhanced model performance.Comment: Accepted by the 49th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2024
    corecore