18 research outputs found

    A Nonconvex Projection Method for Robust PCA

    Full text link
    Robust principal component analysis (RPCA) is a well-studied problem with the goal of decomposing a matrix into the sum of low-rank and sparse components. In this paper, we propose a nonconvex feasibility reformulation of RPCA problem and apply an alternating projection method to solve it. To the best of our knowledge, we are the first to propose a method that solves RPCA problem without considering any objective function, convex relaxation, or surrogate convex constraints. We demonstrate through extensive numerical experiments on a variety of applications, including shadow removal, background estimation, face detection, and galaxy evolution, that our approach matches and often significantly outperforms current state-of-the-art in various ways.Comment: In the proceedings of Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19

    Fastest Rates for Stochastic Mirror Descent Methods

    Get PDF
    Relative smoothness - a notion introduced by Birnbaum et al. (2011) and rediscovered by Bauschke et al. (2016) and Lu et al. (2016) - generalizes the standard notion of smoothness typically used in the analysis of gradient type methods. In this work we are taking ideas from well studied field of stochastic convex optimization and using them in order to obtain faster algorithms for minimizing relatively smooth functions. We propose and analyze two new algorithms: Relative Randomized Coordinate Descent (relRCD) and Relative Stochastic Gradient Descent (relSGD), both generalizing famous algorithms in the standard smooth setting. The methods we propose can be in fact seen as a particular instances of stochastic mirror descent algorithms. One of them, relRCD corresponds to the first stochastic variant of mirror descent algorithm with linear convergence rate.Comment: 45 pages, 2 figure
    corecore