17 research outputs found

    Review on Facial-Recognition-Based Applications in Disease Diagnosis

    No full text
    Diseases not only manifest as internal structural and functional abnormalities, but also have facial characteristics and appearance deformities. Specific facial phenotypes are potential diagnostic markers, especially for endocrine and metabolic syndromes, genetic disorders, facial neuromuscular diseases, etc. The technology of facial recognition (FR) has been developed for more than a half century, but research in automated identification applied in clinical medicine has exploded only in the last decade. Artificial-intelligence-based FR has been found to have superior performance in diagnosis of diseases. This interdisciplinary field is promising for the optimization of the screening and diagnosis process and assisting in clinical evaluation and decision-making. However, only a few instances have been translated to practical use, and there is need of an overview for integration and future perspectives. This review mainly focuses on the leading edge of technology and applications in varieties of disease, and discusses implications for further exploration

    A case of congenital systemic lipodystrophy with exfoliated xanthoma caused by AGPAT2 gene mutation

    No full text
    Objective To analyze the clinical characteristics and genotype of a patient with congenital systemic lipodystrophy (CGL) type 1 associated with exudative xanthoma caused by AGPAT2 gene mutation, and to provide evidence for clinical and genetic diagnosis of the disease.Methods Clinical data of the patient such as medical history, physical examination and laboratory examination were collected. Peripheral venous blood was collected for whole exome sequencing analysis and Sanger sequencing verification, and treatment was provided to patients according to the changes of condition. Results The clinical manifestations of the patient were subcutaneous fat reduction, fatty liver, spleen enlargement, kidney enlargement, high blood sugar and lipids, severe insulin resistance, scattered yellow rash on limbs, which was confirmed as xanthoma. The results of whole exon sequencing showed that the AGPAT2 gene of the patient had a heterozygous nonsense mutation of c.202C>T:p.R68* and c.646A>T:p.K216*, and the former was the pathogenic mutation site. Follow-up therapy covers improvement of lifestyle, low-fat diet and regular exercise. The rashes subsided after active lipid-lowering therapy. Conclusions Apart from typical lipody-strophy, the patient was accompanied by exanthemous xanthoma. No CGL1 patient with exanthemous xanthoma has been reported in the domestic literature database up to now, and the genetic test results showed that there was a c.202C>T heterozygous mutation of AGPAT2 gene. This gene site has not been reported in the literature, and its functional verification needs to be further studied

    11β-Hydroxysteroid dehydrogenase type 1 shRNA ameliorates glucocorticoid-induced insulin resistance and lipolysis in mouse abdominal adipose tissue.

    No full text
    Long-term glucocorticoid exposure increases the risk for developing type 2 diabetes. Prereceptor activation of glucocorticoid availability in target tissue by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) coupled with hexose-6-phosphate dehydrogenase (H6PDH) is an important mediator of the metabolic syndrome. We explored whether the tissue-specific modulation of 11β-HSD1 and H6PDH in adipose tissue mediates glucocorticoid-induced insulin resistance and lipolysis and analyzed the effects of 11β-HSD1 inhibition on the key lipid metabolism genes and insulin-signaling cascade. We observed that corticosterone (CORT) treatment increased expression of 11β-HSD1 and H6PDH and induced lipase HSL and ATGL with suppression of p-Thr(172) AMPK in adipose tissue of C57BL/6J mice. In contrast, CORT induced adipose insulin resistance, as reflected by a marked decrease in IR and IRS-1 gene expression with a reduction in p-Thr(308) Akt/PKB. Furthermore, 11β-HSD1 shRNA attenuated CORT-induced 11β-HSD1 and lipase expression and improved insulin sensitivity with a concomitant stimulation of pThr(308) Akt/PKB and p-Thr(172) AMPK within adipose tissue. Addition of CORT to 3T3-L1 adipocytes enhanced 11β-HSD1 and H6PDH and impaired p-Thr(308) Akt/PKB, leading to lipolysis. Knockdown of 11β-HSD1 by shRNA attenuated CORT-induced lipolysis and reversed CORT-mediated inhibition of pThr(172) AMPK, which was accompanied by a parallel improvement of insulin signaling response in these cells. These findings suggest that elevated adipose 11β-HSD1 expression may contribute to glucocorticoid-induced insulin resistance and adipolysis

    Facial Recognition Intensity in Disease Diagnosis Using Automatic Facial Recognition

    No full text
    Artificial intelligence (AI) technology is widely applied in different medical fields, including the diagnosis of various diseases on the basis of facial phenotypes, but there is no evaluation or quantitative synthesis regarding the performance of artificial intelligence. Here, for the first time, we summarized and quantitatively analyzed studies on the diagnosis of heterogeneous diseases on the basis on facial features. In pooled data from 20 systematically identified studies involving 7 single diseases and 12,557 subjects, quantitative random-effects models revealed a pooled sensitivity of 89% (95% CI 82% to 93%) and a pooled specificity of 92% (95% CI 87% to 95%). A new index, the facial recognition intensity (FRI), was established to describe the complexity of the association of diseases with facial phenotypes. Meta-regression revealed the important contribution of FRI to heterogeneous diagnostic accuracy (p = 0.021), and a similar result was found in subgroup analyses (p = 0.003). An appropriate increase in the training size and the use of deep learning models helped to improve the diagnostic accuracy for diseases with low FRI, although no statistically significant association was found between accuracy and photographic resolution, training size, AI architecture, and number of diseases. In addition, a novel hypothesis is proposed for universal rules in AI performance, providing a new idea that could be explored in other AI applications

    Reassessment of Different Criteria for Diagnosing Post-hepatectomy Liver Failure: a Single-center Study of 1683 Hepatectomy

    No full text
    Assessing the incidence and severity of post-hepatectomy liver failure (PHLF) can be based on different criteria, and we wished to compare the diagnostic efficiency and specificity of different PHLF criteria. Data from patients (n=1683) who received hepatectomies in the liver surgery department of Peking Union Medical College Hospital from April 2008 to August 2014 were retrospectively analyzed. Possible PHLF patients were screened according to the criteria of the International Study Group of Liver Surgery (ISGLS). Subsequently, other PHLF evaluation methods, including Child-Pugh score, “50-50” criteria, Model for End-Stage Liver Disease (MELD) score, and Clavien-Dindo classification were used to assess the suspected PHLF patients, and statistical analysis was performed for correlation of these methods with clinical prognoses. Using ISGLS grading, 40 cases (2.38%) were suspected to have PHLF, among whom 5 (0.30%) patients died. Of the 40 cases there were 9 patients of ISGLS grade A, 21 of grade B, and 10 of grade C. Among the entire group, Child-Pugh scoring showed 3 patients in grade A, 35 in grade B, and 2 in grade C, while only 5 patients met the “50-50” criteria. Interestingly, MELD scores ≥11 points were found only in 3 cases. Twenty-eight patients were classified as Clavien-Dindo grade I, 8 as grade II, 3 as grade III, and 1 as grade IV. Prothrombin time on postoperative day 5 (PT5), ISGLS, and Clavien-Dindo were found to have significant correlation with the prognosis of PHLF (r\u3e0.5, p \u3c0.05), thus can be used as prognosis predictors for PHLF patients

    Reassessment of Different Criteria for Diagnosing Post-hepatectomy Liver Failure: a Single-center Study of 1683 Hepatectomy

    No full text
    Assessing the incidence and severity of post-hepatectomy liver failure (PHLF) can be based on different criteria, and we wished to compare the diagnostic efficiency and specificity of different PHLF criteria. Data from patients (n=1683) who received hepatectomies in the liver surgery department of Peking Union Medical College Hospital from April 2008 to August 2014 were retrospectively analyzed. Possible PHLF patients were screened according to the criteria of the International Study Group of Liver Surgery (ISGLS). Subsequently, other PHLF evaluation methods, including Child-Pugh score, “50-50” criteria, Model for End-Stage Liver Disease (MELD) score, and Clavien-Dindo classification were used to assess the suspected PHLF patients, and statistical analysis was performed for correlation of these methods with clinical prognoses. Using ISGLS grading, 40 cases (2.38%) were suspected to have PHLF, among whom 5 (0.30%) patients died. Of the 40 cases there were 9 patients of ISGLS grade A, 21 of grade B, and 10 of grade C. Among the entire group, Child-Pugh scoring showed 3 patients in grade A, 35 in grade B, and 2 in grade C, while only 5 patients met the “50-50” criteria. Interestingly, MELD scores ≥11 points were found only in 3 cases. Twenty-eight patients were classified as Clavien-Dindo grade I, 8 as grade II, 3 as grade III, and 1 as grade IV. Prothrombin time on postoperative day 5 (PT5), ISGLS, and Clavien-Dindo were found to have significant correlation with the prognosis of PHLF (r\u3e0.5, p \u3c0.05), thus can be used as prognosis predictors for PHLF patients
    corecore