421 research outputs found

    Developing second language oral ability in foreign language classrooms: The role of the length and focus of instruction and individual differences

    Get PDF
    The current study aimed to examine how instruction can impact the global, segmental, prosodic, and temporal qualities of second language (L2) oral ability in foreign language (FL) settings (i.e., a few hours of target language input per week). Spontaneous speech was elicited via a timed picture description task from 56 Japanese freshman college students who had studied English through FL instruction from Grades 7 to 12 without any experience abroad. The tokens were rated for global accentedness and then submitted to segmental, prosodic, and temporal analyses. According to statistical analyses, (a) the participants' oral performance widely varied in relation to the length and focus of FL instruction, the frequency of their conversations in the L2, and aptitude; and (b) their diverse proficiency levels were predicted in particular by the amount of extra FL activities inside (i.e., pronunciation training) and outside (i.e., cram school) of high school (but not junior high) classrooms. The results in turn suggest that whereas extensive FL instruction (>875 hr) itself does make some difference in L2 oral ability development, its pedagogical potential can be increased by how students optimize their most immediate FL experience beyond the regular syllabus

    Iterative Perturbation Theory for Strongly Correlated Electron Systems with Orbital Degeneracy

    Get PDF
    A new scheme of the iterative perturbation theory is proposed for the strongly correlated electron systems with orbital degeneracy. The method is based on the modified self-energy of Yeyati, et al. which interpolates between the weak and the strong correlation limits, but a much simpler scheme is proposed which is useful in the case of the strong correlation with orbital degeneracy. It will be also useful in the study of the electronic structures combined with the band calculations.Comment: 6 pages, 3 Postscript figures, to appear in J. Phys. Cond. Matte

    A longitudinal investigation of the relationship between motivation and late second language speech learning in classroom settings

    Get PDF
    The current study set out to examine the role of learner motivation in second language (L2) speech learning in English-as-a-Foreign-Language classrooms. The motivational orientations of 40 first-year university Japanese students were surveyed via a tailored questionnaire and linked to their spontaneous speech development, elicited via a timed picture description task at the onset and end of one academic semester, in terms of perceived comprehensibility (i.e., ease of understanding) and accentedness (i.e., linguistic nativelikeness). Significant improvement in comprehensibility (but not accentedness) was found among certain individuals. These students likely showed a strong motivation to study English for their future career development as a vague and long-term goal, as well as a high degree of concern for improving comprehensibility, grammatical accuracy and complexity

    First-principles Study of the RKKY Interaction and the Quadrupole Order in the Pr 1-2-20 systems PrT2Al20 (T=Ti, V)

    Full text link
    Electronic states and quadrupole orders in the Pr 1-2-20 systems PrT2Al20 (T=Ti, V) are investigated on the basis of the first-principles calculations. The effective 196 orbital model is derived to reproduce the first-principles electronic structures of LaT2Al20 (T=Ti, V) without contribution from the Pr 4f electrons which are considered to be well localized and is employed to calculate the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions between quadrupole and octupole moments of the Pr ions. Within the random phase approximation for the RKKY Hamiltonian, the most divergent susceptibility is found to be the quadrupole one for the wave vector Q = (0,0,0) in the case of PrTi2Al20 while that for Q = (pi/a,0,pi/a) in the case of PrV2Al20 as consistent with experimental observations in the both cases which exhibit the ferro-quadrupole (FQ) and the antiferro-quadrupole (AFQ) orders, respectively. We also discuss the ordered states using the mean-field approximation and find that, in the case of PrTi2Al20, the 1st-order phase transition to the O20 FQ order with a tiny discontinuity takes place as predicted by the Landau theory. In the case of PrV2Al20, the system exhibits two distinct O22 AFQ orders, AFQ-I and AFQ-II, and shows subsequent two phase transitions, the 2nd-order one from normal to AFQ-I and the 1st-order one from AFQ-I to AFQ-II, that may be responsible for the double transitions observed by specific heat measurements.Comment: 6 pages, 6 figure

    Magnetic Field Dependence of the Paramagnetic to the High Temperature Magnetically Ordered Phase Transition in CeB6

    Full text link
    We have measured the magnetic field dependence of the paramagnetic to high temperature magnetically ordered phase transition TQ(H) in CeB6 from 2 to 30 T using cantilever magnetometry. It is found that the phase separation temperature continuously increases in field with an increasingly positive slope. In addition, we find that measurements in strong magnetic field gradients have no effect on the phase transition.Comment: 6 total page including 3 figures, submitted to Physical Review B (also available at http://publish.aps.org/eprint/gateway/eplist/aps1999dec08_006) v2: Corrected typos, added 1 reference, minor content changes (deleted 1 sentence in introduction, added 2 sentences in discussion to explain added reference), fixed the "et al"s in the bibliograph

    Theory of Anomalous Hall Effect in a Heavy fermion System with a Strong Anisotropic Crystal Field

    Full text link
    In a heavy fermion system, there exists the anomalous Hall effect caused by localized ff-orbital freedom, in addition to the normal Hall effect due to the Lorentz force. In 1994, we found that the Hall coefficient caused by the anomalous Hall effect (RHAHER_H^{AHE}) is predominant and the relation RHAHEρ2R_H^{AHE} \propto \rho^2 (ρ\rho is the electrical resistivity) holds at low temperatures in many compounds. In this work, we study the system where the magnetic susceptibility is highly anisotropic due to the strong crystalline electric field on ff-orbitals. Interestingly, we find that RHAHER_H^{AHE} is nearly isotropic in general. This tendency is frequently observed experimentally, which has casted suspicion that the anomalous Hall effect may be irrelevant in real materials. Our theory corresponds to corrections and generalizations of the pioneering work on ferromagnetic metals by Karplus and Luttinger.Comment: 4 pages, revtex, to be published in J. Phys. Soc. Jpn. (No.8

    Electronic State and Magnetic Susceptibility in Orbitally Degenerate (J=5/2) Periodic Anderson Model

    Full text link
    Magnetic susceptibility in a heavy fermion systemis composed of the Pauli term (\chi_P) and the Van-Vleck term (\chi_V). The latter comes from the interband excitation, where f-orbital degeneracy is essential. In this work, we study \chi_P and \chi_V in the orbitally degenerate (J=5/2) periodic Anderson model for both the metallic and insulating cases. The effect of the correlation between f-electrons is investigated using the self-consistent second-order perturbation theory. The main results are as follows. (i) Sixfold degenerate model: both \chi_P and \chi_V are enhanced by a factor of 1/z (z is the renormalization constant). (ii) Nondegenerate model: only \chi_P is enhanced by 1/z. Thus, orbital degeneracy is indispensable for enhancement of \chi_V. Moreover, orbital degeneracy reduces the Wilson ratio and stabilizes a nonmagnetic Fermi liquid state.Comment: 4 pages, revtex, to be published in J. Phys. Soc. Jpn. (No.8

    Specific Heat Study of Non-Fermi Liquid Behavior in CeNi_2Ge_2: Anomalous Peak in Quasi-Particle Density-of-States

    Full text link
    To investigate the non-Fermi liquid (NFL) behavior in a nonalloyed system CeNi_2Ge_2, we have measured the temperature and field dependences of the specific heat C on a CeNi_2Ge_2 single crystal. The distinctive temperature dependence of C/T (~a-b*T^(1/2)) is destroyed in almost the same manner for both field directions of B//c-axis and B//a-axis. The overall behavior of C(T,B) and the low-temperature upturn in magnetic susceptibility can be reproduced, assuming an anomalous peak of the quasi-particle-band density-of-states (DOS) at the Fermi energy possessing (epsilon)^(1/2) energy dependence. Absence of residual entropy around T=0 K in B~0 T has been confirmed by the magnetocaloric effect measurements, which are consistent with the present model. The present model can also be applied to the NFL behavior in CeCu_{5.9}Au_{0.1} using a ln(epsilon)-dependent peak in the DOS. Possible origins of the peak in the DOS are discussed.Comment: 4 pages, LaTeX, using jpsj.sty, to be published in J. Phys. Soc. Jpn. 66 No. 10 (1997), 7 figures available at http://494-475.phys.metro-u.ac.jp/ao/ceni2ge2.htm

    Thermodynamic and Transport Properties of CeMg2Cu9 under Pressure

    Full text link
    We report the transport and thermodynamic properties under hydrostatic pressure in the antiferromagnetic Kondo compound CeMg2Cu9 with a two-dimensional arrangement of Ce atoms. Magnetic specific heat Cmag(T) shows a Schottky-type anomaly around 30 K originating from the crystal electric field (CEF) splitting of the 4f state with the first excited level at \Delta_{1}/kB = 58 K and the second excited level at \Delta_{2}/kB = 136 K from the ground state. Electric resistivity shows a two-peaks structure due to the Kondo effect on each CEF level around T_{1}^{max} = 3 K and T_{2}^{max} = 40 K. These peaks merge around 1.9 GPa with compression. With increasing pressure, Neel temperature TN initially increases and then change to decrease. TN finally disappears at the quantum critical point Pc = 2.4 GPa.Comment: 10 pages, 6 figure

    Disorder-induced phonon self-energy of semiconductors with binary isotopic composition

    Get PDF
    Self-energy effects of Raman phonons in isotopically disordered semiconductors are deduced by perturbation theory and compared to experimental data. In contrast to the acoustic frequency region, higher-order terms contribute significantly to the self-energy at optical phonon frequencies. The asymmetric dependence of the self-energy of a binary isotope system m1xMxm_{1-x} M_x on the concentration of the heavier isotope mass x can be explained by taking into account second- and third-order perturbation terms. For elemental semiconductors, the maximum of the self-energy occurs at concentrations with 0.5<x<0.70.5<x<0.7, depending on the strength of the third-order term. Reasonable approximations are imposed that allow us to derive explicit expressions for the ratio of successive perturbation terms of the real and the imaginary part of the self-energy. This basic theoretical approach is compatible with Raman spectroscopic results on diamond and silicon, with calculations based on the coherent potential approximation, and with theoretical results obtained using {\it ab initio} electronic theory. The extension of the formalism to binary compounds, by taking into account the eigenvectors at the individual sublattices, is straightforward. In this manner, we interpret recent experimental results on the disorder-induced broadening of the TO (folded) modes of SiC with a 13C^{13}{\rm C}-enriched carbon sublattice. \cite{Rohmfeld00,Rohmfeld01}Comment: 29 pages, 9 figures, 2 tables, submitted to PR
    corecore