65 research outputs found

    Detection of copy number variations in rice using array-based comparative genomic hybridization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number variations (CNVs) can create new genes, change gene dosage, reshape gene structures, and modify elements regulating gene expression. As with all types of genetic variation, CNVs may influence phenotypic variation and gene expression. CNVs are thus considered major sources of genetic variation. Little is known, however, about their contribution to genetic variation in rice.</p> <p>Results</p> <p>To detect CNVs, we used a set of NimbleGen whole-genome comparative genomic hybridization arrays containing 718,256 oligonucleotide probes with a median probe spacing of 500 bp. We compiled a high-resolution map of CNVs in the rice genome, showing 641 CNVs between the genomes of the rice cultivars 'Nipponbare' (from <it>O. sativa </it>ssp. <it>japonica</it>) and 'Guang-lu-ai 4' (from <it>O. sativa </it>ssp. <it>indica</it>). The CNVs identified vary in size from 1.1 kb to 180.7 kb, and encompass approximately 7.6 Mb of the rice genome. The largest regions showing copy gain and loss are of 37.4 kb on chromosome 4, and 180.7 kb on chromosome 8. In addition, 85 DNA segments were identified, including some genic sequences. Contracted genes greatly outnumbered duplicated ones. Many of the contracted genes corresponded to either the same genes or genes involved in the same biological processes; this was also the case for genes involved in disease and defense.</p> <p>Conclusion</p> <p>We detected CNVs in rice by array-based comparative genomic hybridization. These CNVs contain known genes. Further discussion of CNVs is important, as they are linked to variation among rice varieties, and are likely to contribute to subspecific characteristics.</p

    Crystal structure of the human PRPK–TPRKB complex

    No full text
    Jian Li and Xinli Ma et al. present a 2.53 Å crystal structure of a complex consisting of the human p53-related protein kinase (PRPK), TP53RK-binding protein, and adenylyl-imidodiphosphate. They find that one disease mutation, PRPK K238Nfs*2, is important for PRPK’s binding to O-sialoglycoprotein endopeptidase, providing insights into rational drug design

    Lamellation Fractures in the Paleogene Continental Shale Oil Reservoirs in the Qianjiang Depression, Jianghan Basin, China

    No full text
    Based on the data of cores, thin sections, well logs, and test experiments, the characteristics and main controlling factors of lamellation fractures in continental shales of the third and fourth members of the Paleogene Qianjiang Formation in the Qianjiang Depression, Jianghan Basin, are studied. Lamellation fractures mainly develop along laminas in shales. They have various morphological characteristics such as straightness, bending, discontinuity, bifurcation, pinching out, and merging. Lamellation fractures with high density show poor horizontal continuity and connectivity characteristics. The average linear density of the lamellation fractures is mainly between 20 m-1 and 110 m-1, and the aperture is usually less than 160 μm. The density of lamellation fractures is related to their apertures. The smaller the apertures of lamellation fractures are, the higher the density is. The development degree of lamellation fractures is mainly controlled by mineral composition, type, thickness, density of lamination, contents of organic matter and pyrite, lithofacies, structural position, etc. Lamellation fractures develop well, especially under the conditions of medium dolomite content, large lamination density, small lamination thickness, and high total organic carbon (TOC) and pyrite contents. The influences of lithofacies on the lamellation fractures are complex. The lamellation fractures are most developed in carbonaceous layered limestone dolomite and carbonaceous layered dolomite mudstone, followed by stromatolite dolomite filled with carbonaceous pyroxene. The fractures in the massive argillaceous dolomites and carbonaceous massive mudstones are poorly developed. No fractures can be found in the carbonaceous dolomitic, argillaceous glauberites or salt rocks with high glauberite content. Structure is also an important factor controlling lamination fractures. Tectonic uplifts are beneficial to the expansion and extension of lamellation fractures, which increases fracture density. Therefore, when other influence factors are similar, lamellation fractures develop better in the high part of the structure than in the low part

    HBx Sensitizes Cells to Oxidative Stress-induced Apoptosis by Accelerating the Loss of Mcl-1 Protein via Caspase-3 Cascade

    No full text
    Abstract Background Oxidative stress has been implicated in the pathogenesis of a wide spectrum of human diseases, including Hepatitis B virus (HBV)-related liver disease. Hepatitis B virus X protein (HBx) is a key regulator of HBV that exerts pleiotropic activity on cellular functions. Recent studies showed that HBx alters mitochondrial membrane potential, thereby sensitizing cells to pro-apoptotic signals. However, it remains largely unknown whether susceptibility of hepatocytes could be disturbed by HBx under oxidative stress conditions. The purpose of this study is to determine the apoptotic susceptibility of HBx-expressing hepatocytes upon exposure to pro-oxidant stimuli in vitro and in vivo and explore its underlying mechanism. Results Although expression of HBx itself did not activate apoptotic signaling, it significantly enhanced oxidative stress-induced cell death both in vitro and in vivo. Interestingly, this phenomenon was associated with a pronounced reduction of protein levels of Mcl-1, but not other anti-apoptotic Bcl-2 members. Importantly, enforced expression of Mcl-1 prevented HBx-triggered cell apoptosis; conversely, specific knockdown of Mcl-1 exacerbated HBx-induced apoptosis upon exposure to oxidative stress. Furthermore, inhibition of caspase-3 not only abrogated HBx-triggered apoptotic killing but also blocked HBx-induced Mcl-1 loss. Additionally, expression of HBx and Mcl-1 was found to be inversely correlated in HBV-related hepatocellular carcinogenesis (HCC) tissues. Conclusions Our findings indicate that HBx exerts pro-apoptotic effect upon exposure to oxidative stress probably through accelerating the loss of Mcl-1 protein via caspase-3 cascade, which may shed a new light on the molecular mechanism of HBV-related hepatocarcinogenesis.</p

    Prediction of molecular targets of cancer preventing flavonoid compounds using computational methods.

    Get PDF
    Plant-based polyphenols (i.e., phytochemicals) have been used as treatments for human ailments for centuries. The mechanisms of action of these plant-derived compounds are now a major area of investigation. Thousands of phytochemicals have been isolated, and a large number of them have shown protective activities or effects in different disease models. Using conventional approaches to select the best single or group of best chemicals for studying the effectiveness in treating or preventing disease is extremely challenging. We have developed and used computational-based methodologies that provide efficient and inexpensive tools to gain further understanding of the anticancer and therapeutic effects exerted by phytochemicals. Computational methods involving virtual screening, shape and pharmacophore analysis and molecular docking have been used to select chemicals that target a particular protein or enzyme and to determine potential protein targets for well-characterized as well as for novel phytochemicals

    Hepatitis B Virus X Protein Enhances Cisplatin-Induced Hepatotoxicity via a Mechanism Involving Degradation of Mcl-1 ▿ †

    No full text
    Hepatitis B virus X protein (HBx) is implicated in the pathogenesis of hepatitis B virus (HBV)-associated liver diseases. However, whether HBx has the ability to disturb the susceptibility of hepatocytes to common chemotherapeutic agents remains incompletely understood. Here we demonstrate that HBx enhances cisplatin-induced hepatotoxicity by a mechanism involving degradation of Mcl-1, an antiapoptotic member of the Bcl-2 family. Ectopic expression of HBx sensitized hepatocytes to cisplatin-induced apoptosis, which was accompanied by a marked downregulation of Mcl-1 but not of Bcl-2 or Bcl-xL. Overexpression of Mcl-1 prevented HBx-induced proapoptotic and proinflammatory effects during cisplatin treatment both in vitro and in vivo. HBx-induced dysregulation of Mcl-1 resulted mainly from posttranslational degradation rather than transcription repression. Moreover, a caspase-3 inhibitor effectively abrogated HBx-enhanced Mcl-1 degradation and cell death. Importantly, antioxidants blocked activation of caspase-3 and acceleration of Mcl-1 loss, as well as cell death, in HBx-expressing hepatocytes upon cisplatin exposure in vitro and in vivo. Collectively, these data implicate oxidative stress-dependent caspase-3-mediated degradation of Mcl-1 as a mechanism contributing to HBx-mediated sensitization of cisplatin-induced hepatotoxicity. A combination of cisplatin and antioxidants might provide more advantage than cisplatin alone in the treatment of cancer patients with chronic HBV infection

    Select dietary phytochemicals function as inhibitors of COX-1 but not COX-2.

    Get PDF
    Recent clinical trials raised concerns regarding the cardiovascular toxicity of selective cyclooxygenase-2 (COX-2) inhibitors. Many active dietary factors are reported to suppress carcinogenesis by targeting COX-2. A major question was accordingly raised: why has the lifelong use of phytochemicals that likely inhibit COX-2 presumably not been associated with adverse cardiovascular side effects. To answer this question, we selected a library of dietary-derived phytochemicals and evaluated their potential cardiovascular toxicity in human umbilical vein endothelial cells. Our data indicated that the possibility of cardiovascular toxicity of these dietary phytochemicals was low. Further mechanistic studies revealed that the actions of these phytochemicals were similar to aspirin in that they mainly inhibited COX-1 rather than COX-2, especially at low doses

    A Target-Triggered DNAzyme Motor Enabling Homogeneous, Amplified Detection of Proteins

    No full text
    We report here the concept of a self-powered, target-triggered DNA motor constructed by engineering a DNAzyme to adapt into binding-induced DNA assembly. An affinity ligand was attached to the DNAzyme motor via a DNA spacer, and a second affinity ligand was conjugated to the gold nanoparticle (AuNP) that was also decorated with hundreds of substrate strands serving as a high-density, three-dimensional track for the DNAzyme motor. Binding of a target molecule to the two ligands induced hybridization between the DNAzyme and its substrate on the AuNP, which are otherwise unable to spontaneously hybridize. The hybridization of DNAzyme with the substrate initiates the cleavage of the substrate and the autonomous movement of the DNAzyme along the AuNP. Each moving step restores the fluorescence of a dye molecule, enabling monitoring of the operation of the DNAzyme motor in real time. A simple addition or depletion of the cofactor Mg<sup>2+</sup> allows for fine control of the DNAzyme motor. The motor can translate a single binding event into cleavage of hundreds of substrates, enabling amplified detection of proteins at room temperature without the need for separation
    corecore