37 research outputs found

    Medical insurance payment schemes and patient medical expenses: a cross-sectional study of lung cancer patients in urban China

    Get PDF
    BackgroundAs the main cause of cancer death, lung cancer imposes seriously health and economic burdens on individuals, families, and the health system. In China, there is no national study analyzing the hospitalization expenditures of different payment methods by lung cancer inpatients. Based on the 2010-2016 database of insured urban resident lung cancer inpatients from the China Medical Insurance Research Association (CHIRA), this paper aims to investigate the characteristics and cost of hospitalized lung cancer patient, to examine the differences in hospital expenses and patient out-of-pocket (OOP) expenses under four medical insurance payment methods: fee-for-service (FFS), per-diem payments, capitation payments (CAP) and case-based payments, and to explore the medical insurance payment method that can be conducive to controlling the cost of lung cancer.MethodThis is a 2010-2016, 7-year cross-sectional study. CHIRA data are not available to researchers after 2016. The Medical Insurance Database of CHIRA was screened using the international disease classification system to yield 28,200 inpatients diagnosed with lung cancer (ICD-10: C34, C34.0, C34.1, C34.2, C34.3, C34.8, C34.9). The study includes descriptive analysis and regression analysis based on generalized linear models (GLM).ResultsThe average patient age was 63.4 years and the average length of hospital stay (ALOS) was 14.2 day; 60.7% of patients were from tertiary hospitals; and 45% were insured by FFS. The per-diem payment had the lowest hospital expenses (RMB7496.00/US1176.87),whileCAPhadthelowestOOPexpenses(RMB1328.18/US1176.87), while CAP had the lowest OOP expenses (RMB1328.18/US208.52). Compared with FFS hospital expenses, per-diem was 21.3% lower (95% CI = -0.265, -0.215) and case-based payment was 8.4% lower (95% CI = -0.151, -0.024). Compared with the FFS, OOP expenses, per-diem payments were 9.2% lower (95% CI = -0.130, -0.063) and CAP was 15.1% lower (95% CI = -0.151, -0.024).ConclusionFor lung cancer patients, per-diem payment generated the lowest hospital expenses, while CAP meant patients bore the lowest OOP costs. Policy makers are suggested to give priority to case-based payments to achieve a tripartite balance among medical insurers, hospitals, and insured members. We also recommend future studies comparing the disparities of various diseases for the cause of different medical insurance schemes

    The Effects of the Temperature and Termination(-O) on the Friction and Adhesion Properties of MXenes Using Molecular Dynamics Simulation

    No full text
    Two-dimensional transition metal carbides and nitrides (MXenes) are widely applied in the fields of electrochemistry, energy storage, electromagnetism, etc., due to their extremely excellent properties, including mechanical performance, thermal stability, photothermal conversion and abundant surface properties. Usually, the surfaces of the MXenes are terminated by –OH, –F, –O or other functional groups and these functional groups of MXenes are related surface properties and reported to affect the mechanical properties of MXenes. Thus, understanding the effects of surface terminal groups on the properties of MXenes is crucial for device fabrication as well as composite synthesis using MXenes. In this paper, using molecular dynamics (MD) simulation, we study the adhesion and friction properties of Ti2C and Ti2CO2, including the indentation strength, adhesion energy and dynamics of friction. Our indentation fracture simulation reveals that there are many unbroken bonds and large residual stresses due to the oxidation of oxygen atoms on the surface of Ti2CO2. By contrast, the cracks of Ti2C keep clean at all temperatures. In addition, we calculate the elastic constants of Ti2C and Ti2CO2 by the fitting force–displacement curves with elastic plate theory and demonstrate that the elastic module of Ti2CO2 is higher. Although the temperature had a significant effect on the indentation fracture process, it hardly influences maximum adhesion. The adhesion energies of Ti2C and Ti2CO2 were calculated to be 0.3 J/m2 and 0.5 J/m2 according to Maugis–Dugdale theory. In the friction simulation, the stick-slip atomic scale phenomenon is clearly observed. The friction force and roughness (Ra) of Ti2C and Ti2CO2 at different temperatures are analyzed. Our study provides a comprehensive insight into the mechanical behavior of nanoindentation and the surface properties of oxygen functionalized MXenes, and the results are beneficial for the further design of nanodevices and composites

    Preparing coal water slurry from BDO tar to achieve resource utilization: gasification process of BDO tar-coal water slurry

    No full text
    1, 4-Butanediol (BDO) is an important organic and fine chemical raw material, but the waste liquid (BDO tar) discoal charged from the BDO production plant is complex in composition, contains salt, and is complicated to handle. In this study, BDO tar was treated by the method of waste-coal water slurry, and the gasification process of blending BDO tar was studied. The results show that as the BDO tar content increases, the organic component in the BDO tar causes the temperature point corresponding to the peak of the maximum reaction rate to migrate to the high temperature zone during the initial temperature to 150 °C. In the temperature range of 200 °C~300 °C, the weight loss of BDO tar leads to a significant weight loss peak of TG curves. From 600 °C to the final reaction temperature range, the alkali metal Na enriches the surface of the coal char with more active “spot”, and due to the alkali metal Na limits the graphitization of coal char, the active sites increase, which increases the coal char gasification reaction activity

    Quantum-dot-functionalized poly(styrene-co-acrylic acid) microbeads : step-wise self-assembly, characterization, and applications for sub-femtomolar electrochemical detection of DNA hybridization

    No full text
    A novel nanoparticle label capable of amplifying the electrochemical signal of DNA hybridization is fabricated by functionalizing poly(styrene-co-acrylic acid) microbeads with CdTe quantum dots. CdTe-tagged polybeads are prepared by a layer-by-layer self-assembly of the CdTe quantum dots (diameter = 3.07 nm) and polyelectrolyte on the polybeads (diameter = 323 nm). The self-assembly procedure is characterized using scanning and transmission electron microscopy, and X-ray photoelectron, infrared and photoluminescence spectroscopy. The mean quantum-dot coverage is (9.54 ± 1.2) × 10³ per polybead. The enormous coverage and the unique properties of the quantum dots make the polybeads an effective candidate as a functionalized amplification platform for labelling of DNA or protein. Herein, as an example, the CdTe-tagged polybeads are attached to DNA probes specific to breast cancer by streptavidin–biotin binding to construct a DNA biosensor. The detection of the DNA hybridization process is achieved by the square-wave voltammetry of Cd²⁺ after the dissolution of the CdTe tags with HNO₃. The efficient carrier-bead amplification platform, coupled with the highly sensitive stripping voltammetric measurement, gives rise to a detection limit of 0.52 fmol L⁻¹ and a dynamic range spanning 5 orders of magnitude. This proposed nanoparticle label is promising, exhibits an efficient amplification performance, and opens new opportunities for ultrasensitive detection of other biorecognition events.7 page(s

    Mineralogical characteristic and beneficiation evaluation of rare earth carbonate wall rock

    No full text
    In order to rationalize the development and utilization of the wall rock discarded during rare earth mining, chemical analysis, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction analysis, artificial panning, optical microscope analysis, mineral liberation analysis and energy-dispersive spectroscopy were used to study the process mineralogy of the wall rock. The results show that the main useful elements in the rare earth wall rock were iron, light rare earth elements, fluorine and niobium. Iron was mainly occurrence as magnetic iron in magnetite, rare earth elements in bastnaesite and monazite, fluorine as a independent mineral in fluorite and niobium in columbite. The main useful minerals were finely disseminated, with magnetite (48.16%), bastnaesite (49.04%), monazite (42.18%), fluorite (39.30%) and columbite (63.26%) distributed in -0.030 mm particle size. The useful minerals were evaluated separately for beneficiation based on the process mineralogical characteristics of the rare earth wall rock, and the results showed that magnetite, rare earth and fluorite resources could be effectively recovered using magnetic separation, flotation, gravity concentration and leaching enrichment methods. The sequential recovery of iron, rare earth, fluorine and niobium elements produces iron concentrate (65.40% TFe at recovery of 38.03%), rare earth concentrate (50.66% REE at recovery of 62.73%), fluorite concentrate (95.23% CaF2 at recovery of 40.34%) and niobium iron ore concentrate (1.63% Nb2O5 at recovery of 5.56%). This study provides recommendations for the rational development and utilization of rare earth wall rock and provides reasonable levels of recovery predictions

    Low Concentration Platinum Nanoparticles Effectively Scavenge Reactive Oxygen Species in Rat Skeletal L6 Cells

    No full text
    Prolonged exposure to excessive reactive oxygen species (ROS) increases risk factors for many diseases. Therefore, elimination of ROS as well as prevention of its production becomes critically important. In the present study, we evaluated the levels of cytotoxicity and ROS scavenging activity induced by synthetic platinum nanoparticles (PtNPs). Average size of synthesized PtNPs was 2.2 nm. Synthetic PtNPs were found to scavenge both induced and endogenous H2O2 significantly in L6 rat skeletal muscle cells at a very low concentration (10-2 mg/l). To investigate the mechanism of action, the hierarchical oxidative stress model was used as an experimental model. To evaluate this possibility, we assessed glutathione concentration and gene levels of several antioxidant enzymes in PtNPs-treated (10-3-10 mg/l) L6 cells. Reduced glutathione (GSH) was increased in the range of 10-3-1 mg/l, but not in the 10 mg/l PtNP-treated cells. The GSH/GSSG ratio increased significantly at 1 mg/l and decreased in the 10 mg/l PtNPtreated cells. Most of the gene transcripts for oxidative stress inducible heme oxygenase-1 (HO-1), glutathione reductase (GR), copper-zinc superoxide dismutase (CuZn-SOD), manganese superoxide dismutase (Mn-SOD), glutathione peroxidase (GPx), and catalase were increased significantly by PtNPs at 10-1-10 mg/l. Such upregulatory effects induced by synthetic PtNPs at high concentrations (1-10 mg/l) in L6 cells can be explained by the hierarchical oxidative stress model. However, the cellular responses induced by low levels (10-3-10-2 mg/l) of PtNPs could not be fully explained by this model
    corecore