23 research outputs found

    Effect of long-term treatment with aromatase inhibitor on testicular function of adult male bonnet monkeys (M. radiata)

    Get PDF
    The role/need for estrogen in regulating testicular function of adult male bonnet monkeys (M. radiata) has been investigated by dosing orally a group of five normal males 2.5 mgs of CGP 47645, a long-acting nonsteroidal aromatase inhibitor (AI), once every 5 days for over 150 days. Such treatment resulted in a 10-fold increment in nocturnal serum testosterone (T) levels, which were sustained for 85 days of treatment, and a twofold increment in basal serum T levels was present throughout the 150 days of treatment. Analysis of ejaculated semen showed a marked reduction (~90%) in sperm counts in four out of five monkeys between Days 55-85 of treatment. During this period, the motility score also was markedly reduced from a normal score of 3-5 to 0-2. Flow cytometric analysis of testicular germ cells obtained from biopsy tissue taken on Days 63 and 120 indicated a marked reduction only in elongating/elongated spermatid population (compared to Day 0 values), suggesting inhibition in spermiogenic process. Epididymal sperm maturation also seemed effected as sperm chromatin, on flow cytometric analysis for decondensability following exposure to 5 mM dithiotreitol, showed to be in a hypercondensed state. This study thus indicates that estrogen has an important role in providing normal testicular and sperm function in the primate

    Computational Prediction of a Putative Binding Site on Drp1: Implications for Antiparkinsonian Therapy

    No full text
    Parkinson’s disease is the second most common neurodegenerative disorder, for which no cure or disease-modifying therapies exist. It is evident that mechanisms impairing mitochondrial dynamics will damage cell signaling pathways, leading to neuronal death that manifests as Parkinson’s disease. Dynamin related protein1, a highly conserved profission protein that catalyzes the process of mitochondrial fission, is also associated with the excessive fragmentation of mitochondria, impaired mitochondrial dynamics and cell death. Hence, Dynamin related protein1 has emerged as a key therapeutic target for diseases involving mitochondrial dysfunction. In this work, we employed a relatively novel and integrated computational strategy to identify a cryptic binding site of Dynamin related protein1 and exploited the predicted site in the rational drug designing process. This novel approach yielded three potential inhibitors, and all of them were evaluated for their neuroprotective efficacy in <i>C. elegans</i> model of Parkinson’s disease

    Effect of long-term treatment with aromatase inhibitor on testicular function of adult male bonnet monkeys (M-radiata)

    No full text
    The role/need for estrogen in regulating testicular function of adult male bonnet monkeys (M. radiata) has been investigated by dosing orally a group of five normal males 2.5 mgs of CGP 47645, a long-acting nonsteroidal aromatase inhibitor (AI), once every 5 days for over 150 days. Such treatment resulted in a 10-fold increment in nocturnal serum testosterone (T) levels, which were sustained for 85 days of treatment, and a twofold increment in basal serum T levels was present throughout the 150 days of treatment. Analysis of ejaculated semen showed a marked reduction (similar to 90%) in sperm counts in four out of five monkeys between Days 55-85 of treatment. During this period, the motility scare also was markedly reduced from a normal score of 3-5 to 0-2. Flow cytometric analysis of testicular germ cells obtained from biopsy tissue taken on Days 63 and 120 indicated a marked reduction only in elongating/elongated spermatid population (compared to Day 0 values), suggesting inhibition in spermiogenic process. Epididymal sperm maturation also seemed effected as sperm chromatin, on flow cytometric analysis for decondensability following exposure to 5 mM dithiotreitol, showed to be in a hypercondensed state. This study thus indicates that estrogen has an important role in providing normal testicular and sperm function in the primat

    Alterations in Sperm Characteristics of Follicle-Stimulating Hormone (FSH)-Immunized Men Are Similar to Those of FSH-Deprived Infertile Male Bonnet Monkeys

    No full text
    The quality of sperm ejaculated by bonnet monkeys and normal, healthy proven fertile volunteer men, both actively immunized with ovine follicle-stimulating hormone (oFSH), was examined at different times of study for chromatin packaging and acrosomal glycoprotein concentration by flow cytometry. Susceptibility of sperm nuclear DNA to dithiothreitol (DTT)-induced decondensation, as measured by ethidium bromide binding, was markedly high compared with values at day 0 in men and monkeys during periods when FSH antibody titer was high. Sperm chromatin structure assay yields αt\alpha t values, which is another index of chromatin packaging. Higher αt\alpha t values, signifying poor packaging, occurred in both species following immunization with heterologous pituitary FSH. The binding of fluorosceinated pisum sativum agglutinin (PSA-FITC) to acrosome of sperm of monkeys and men was significantly low, compared with values at day 0 (control) during periods when cross-reactive FSH antibody titer was high and endogenous FSH was not detectable. Blockade of FSH function in monkeys by active immunization with a recombinant oFSH receptor protein corresponding to a naturally occurring messenger RNA (mRNA) also resulted in production of sperm with similar defects in chromatin packaging and reduced acrosomal glycoprotein concentration. Thus, it appears that in monkeys and men, lack of FSH signaling results in production of sperm that exhibit defective chromatin packaging and reduction in acrosomal glycoprotein content. These characteristics are similar to that exhibited by sperm of some class of infertile men. Interestingly, these alterations in sperm quality occur well ahead of decreased sperm counts in the ejaculate

    Induction of cell death by ternary copper(II) complexes of L-tyrosine and diimines: role of coligands on DNA binding and cleavage and anticancer activity

    No full text
    The mononuclear mixed ligand copper(II) complexes of the type [Cu(l-tyr)(diimine)](ClO4), where tyr is l-tyrosine and diimine is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) (3), and dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (4), have been isolated and characterized by analytical and spectral methods. In the X-ray crystal structure 3 Cu(II) possesses a distorted square pyramidal coordination geometry with the two nitrogen atoms of 5,6-dmp ligand and the amine nitrogen and carboxylate oxygen atoms of l-tyrosine located at the equatorial sites and the coordinated water molecule present in the apical position. The electronic absorption and electron paramagnetic resonance (EPR) spectral parameters reveal that the complexes retain their square-based geometries even in solution. All of the complexes display a ligand field band in the visible region (600-700 nm) in Tris-HCl/NaCl buffer (5:50 mM) at pH 7.2 and also axial EPR spectra in acetonitrile at 77 K with g &gt; g&#8869; indicating a dx2-y2 ground state. The g and A values of 2.230 and (170-180) &#215; 10-4 cm-1, respectively, conform to a square-based CuN3O coordination chromophore, which is consistent with the X-ray crystal structure of 3. The interaction of the complexes with calf thymus DNA (CT DNA) has been explored by using physical methods to propose modes of DNA binding of the complexes. Absorption (Kb) and emission spectral studies and viscosity measurements indicate that 4 interacts with DNA more strongly than all of the other complexes through partial intercalation of the extended planar ring of dpq with DNA base stack. Interestingly, complex 3 exhibits a DNA binding affinity that is higher than that of 2, which suggests the involvement of 5,6-dimethyl groups on the phen ring in hydrophobic interaction with DNA surface. In contrast with the increase in relative viscosities of DNA bound to 2-4, the viscosity of DNA bound to 1 decreases, indicating the shortening of the DNA chain length by means of the formation of kinks or bends. All complexes exhibit effective DNA (pUC19 DNA) cleavage at 100 &#956; M complex concentrations, and the order of DNA cleavage ability varies as 3 &gt; 2 &gt; 4 &gt; 1. Interestingly, 3 exhibits a DNA cleavage rate constant that is higher than that of the other complexes only at 100 &#956; M concentration, whereas 4 exhibits the highest cleavage rate constant at 80 &#181;M complex concentration. The oxidative DNA cleavage follows the order 4 &gt; 3 &gt; 2 &gt; 1. Mechanistic studies reveal that the DNA cleavage pathway involves hydroxyl radicals. Interestingly, only 4 displays efficient photonuclease activity upon irradiation with 365 nm light, which occurs through double-strand DNA breaks involving hydroxyl radicals. Furthermore, cytotoxicity studies on the nonsmall lung cancer (H-460) cell line show that the IC50 values of 2-4 are more or less equal to cisplatin for the same cell line, indicating that they have the potential to act as very effective anticancer drugs in a time-dependent manner. The study of cytological changes reveals the higher induction of apoptosis and mitotic catastrophe for 4 and 3, respectively. The alkaline single-cell gel electrophoresis (comet assay), DNA laddering, and AO/EB and Hoechst 33258 staining assays have also been employed in finding the extent of DNA damage. Flow cytometry analysis shows an increase in the percentage of cells with apoptotic morphological features in the sub-G0/G1 phase for 4, whereas it shows mitotic catastrophe for 3
    corecore