7 research outputs found

    The challenge of choosing in cardiovascular risk management

    Get PDF
    Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. For many years guidelines have listed optimal preventive therapy. More recently, novel therapeutic options have broadened the options for state-of-the-art CV risk management (CVRM). In the majority of patients with CVD, risk lowering can be achieved by utilising standard preventive medication combined with lifestyle modifications. In a minority of patients, add-on therapies should be considered to further reduce the large residual CV risk. However, the choice of which drug combination to prescribe and in which patients has become increasingly complicated, and is dependent on both the absolute CV risk and the reason for the high risk. In this review, we discuss therapeutic decisions in CVRM, focusing on (1) the absolute CV risk of the patient and (2) the pros and cons of novel treatment options.Cardiolog

    Polymorphisms in Glyoxalase I Gene Are Not Associated with Glyoxalase I Expression in Whole Blood or Markers of Methylglyoxal Stress: The CODAM Study

    No full text
    Glyoxalase 1 (Glo1) is the rate-limiting enzyme in the detoxification of methylglyoxal (MGO) into D-lactate. MGO is a major precursor of advanced glycation endproducts (AGEs), and both are associated with development of age-related diseases. Since genetic variation in GLO1 may alter the expression and/or the activity of Glo1, we examined the association of nine SNPs in GLO1 with Glo1 expression and markers of MGO stress (MGO in fasting plasma and after an oral glucose tolerance test, D-lactate in fasting plasma and urine, and MGO-derived AGEs CEL and MG-H1 in fasting plasma and urine). We used data of the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM, n = 546, 60 +/- 7 y, 25% type 2 diabetes). Outcomes were compared across genotypes using linear regression, adjusted for age, sex, and glucose metabolism status. We found that SNP4 (rs13199033) was associated with Glo1 expression (AA as reference, standardized beta AT = -0.29, p = 0.02 and TT = -0.39, p = 0.3). Similarly, SNP13 (rs3799703) was associated with Glo1 expression (GG as reference, standardized beta AG = 0.17, p = 0.14 and AA = 0.36, p = 0.005). After correction for multiple testing these associations were not significant. For the other SNPs, we observed no consistent associations over the different genotypes. Thus, polymorphisms of GLO1 were not associated with Glo1 expression or markers of MGO stress, suggesting that these SNPs are not functional, although activity/expression might be altered in other tissues

    Dietary intake of advanced glycation endproducts is associated with higher levels of advanced glycation endproducts in plasma and urine : The CODAM study

    No full text
    Background & aims: Advanced glycation endproducts (AGEs) are formed by the reaction between reducing sugars and proteins. AGEs in the body have been associated with several age-related diseases. High-heat treated and most processed foods are rich in AGEs. The aim of our study was to investigate whether dietary AGEs, are associated with plasma and urinary AGE levels.Methods: In 450 participants of the Cohort on Diabetes and Atherosclerosis Maastricht study (CODAM study) we measured plasma and urine concentrations of the AGEs Nε-(carboxymethyl)lysine (CML), Nε-(1-carboxyethyl)lysine (CEL) and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) using UPLC-MS/MS. We also estimated dietary intake of CML, CEL and MG-H1 with the use of a dietary AGE database and a food frequency questionnaire (FFQ). We used linear regression to investigate the association between standardized dietary AGE intake and standardized plasma or urinary AGE levels, after adjustment for age, sex, glucose metabolism status, waist circumference, kidney function, energy- and macro-nutrient intake, smoking status, physical activity, alcohol intake, LDL-cholesterol and markers of oxidative stress.Results: We found that higher intake of dietary CML, CEL and MG-H1 was associated with significantly higher levels of free plasma and urinary CML, CEL and MG-H1 (βCML = 0.253 (95% CI 0.086; 0.415), βCEL = 0.194 (95% CI 0.040; 0.339), βMG-H1 = 0.223 (95% CI 0.069; 0.373) for plasma and βCML = 0.223 (95% CI 0.049; 0.393), βCEL = 0.180 (95% CI 0.019; 0.332), βMG-H1 = 0.196 (95% CI 0.037; 0.349) for urine, respectively). In addition, we observed non-significant associations of dietary AGEs with their corresponding protein bound plasma AGEs.Conclusion: We demonstrate that higher intake of dietary AGEs is associated with higher levels of AGEs in plasma and urine. Our findings may have important implications for those who ingest a diet rich in AGEs

    Pyridoxamine reduces methylglyoxal and markers of glycation and endothelial dysfunction, but does not improve insulin sensitivity or vascular function in abdominally obese individuals: A randomized double-blind placebo-controlled trial

    No full text
    Aim: To investigate the effects of pyridoxamine (PM), a B6 vitamer and dicarbonyl scavenger, on glycation and a large panel of metabolic and vascular measurements in a randomized double-blind placebo-controlled trial in abdominally obese individuals.Materials and methods: Individuals (54% female; mean age 50 years; mean body mass index 32 kg/m(2)) were randomized to an 8-week intervention with either placebo (n = 36), 25 mg PM (n = 36) or 200 mg PM (n = 36). We assessed insulin sensitivity, beta-cell function, insulin-mediated microvascular recruitment, skin microvascular function, flow-mediated dilation, and plasma inflammation and endothelial function markers. PM metabolites, dicarbonyls and advanced glycation endproducts (AGEs) were measured using ultra-performance liquid chromatography tandem mass spectrometry. Treatment effects were evaluated by one-way ANCOVA.Results: In the high PM dose group, we found a reduction of plasma methylglyoxal (MGO) and protein-bound N delta-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1), as compared to placebo. We found a reduction of the endothelial dysfunction marker soluble vascular cell adhesion molecule-1 (sVCAM-1) in the low and high PM dose group and of soluble intercellular adhesion molecule-1 (sICAM-1) in the high PM dose, as compared to placebo. We found no treatment effects on insulin sensitivity, vascular function or other functional outcome measurements.Conclusions: This study shows that PM is metabolically active and reduces MGO, AGEs, sVCAM-1 and sICAM-1, but does not affect insulin sensitivity and vascular function in abdominally obese individuals. The reduction in adhesion markers is promising because these are important in the pathogenesis of endothelial damage and atherosclerosis

    Apoptotic ablation of platelets reduces atherosclerosis in mice with diabetes

    No full text
    Objective: People with diabetes are at a significantly higher risk of cardiovascular disease, in part, due to accelerated atherosclerosis. Diabetic subjects have increased number of platelets that are activated, more reactive, and respond suboptimally to antiplatelet therapies. We hypothesized that reducing platelet numbers by inducing their premature apoptotic death would decrease atherosclerosis. Approach and Results: This was achieved by targeting the antiapoptotic protein Bcl-x(L) (B-cell lymphoma-extra large; which is essential for platelet viability) via distinct genetic and pharmacological approaches. In the former, we transplanted bone marrow from mice carrying the Tyr15 to Cys loss of function allele of Bcl-x (known as Bcl-x(Plt20)) or wild-type littermate controls into atherosclerotic-prone Ldlr(+/−) mice made diabetic with streptozotocin and fed a Western diet. Reduced Bcl-x(L) function in hematopoietic cells significantly decreased platelet numbers, exclusive of other hematologic changes. This led to a significant reduction in atherosclerotic lesion formation in Bcl-x(Plt20) bone marrow transplanted Ldlr(+/−) mice. To assess the potential therapeutic relevance of reducing platelets in atherosclerosis, we next targeted Bcl-x(L) with a pharmacological strategy. This was achieved by low-dose administration of the BH3 (B-cell lymphoma-2 homology domain 3) mimetic, ABT-737 triweekly, in diabetic Apoe(−/−) mice for the final 6 weeks of a 12-week study. ABT-737 normalized platelet numbers along with platelet and leukocyte activation to that of nondiabetic controls, significantly reducing atherosclerosis while promoting a more stable plaque phenotype. Conclusions: These studies suggest that selectively reducing circulating platelets, by targeting Bcl-x(L) to promote platelet apoptosis, can reduce atherosclerosis and lower cardiovascular disease risk in diabetes.Man K.S. Lee, Michael J. Kraakman, Dragana Dragoljevic, Nordin M.J. Hanssen, Michelle C. Flynn, Annas Al-Sharea, Gopalkrishna Sreejit, Camilla Bertuzzo-Veiga, Olivia D. Cooney, Fatima Baig, Elizabeth Morriss, Mark E. Cooper, Emma C. Josefsson, Benjamin T. Kile, Prabhakara R. Nagareddy, Andrew J. Murph
    corecore