32 research outputs found

    Indium-mediated allylation in carbohydrate synthesis: A short and efficient approach towards higher 2-acetamido-2-deoxy sugars

    No full text
    Higher aminosugars are interesting targets in carbohydrate synthesis since these compounds play important roles in biological systems. However, their availability from natural sources is limited. Thus, in order to investigate their biological function, the development of facile and adaptable routes to this class of compounds is of fundamental importance. Our synthetic route towards these target molecules makes use of readily accessible pentoses and hexoses, which are subjected to indium-mediated two-carbon chain elongation. Subsequent ozonolysis and treatment with base yields α,β-unsaturated aldehydes, which are stereoselectively epoxidized using Jørgenson’s protocol. After Wittig chain elongation the obtained allylic epoxides were regio- and stereoselectively opened with trimethylsilyl azide under palladium catalysis. Finally, a suitable deprotection protocol, starting with acidic acetate cleavage and ozonolysis was established. Peracetylation of the products simplifies purification and subsequent azide reduction followed by final deacetylation using methanolic sodium methoxide furnishes the title compounds

    Immobilization of Agaricus bisporus Polyphenol Oxidase 4 on mesoporous silica : Towards mimicking key enzymatic processes in peat soils

    Get PDF
    Hypothesis: The use of immobilized enzyme-type biocatalysts to mimic specific processes in soil can be considered one of the most promising alternatives to overcome the difficulties behind the structural elucidation of riverine humic-derived iron-complexes. Herein, we propose that the immobilization of the functional mushroom tyrosinase, Agaricus bisporus Polyphenol Oxidase 4 (AbPPO4) on mesoporous SBA-15-type silica could contribute to the study of small aquatic humic ligands such as phenols. Experiments: The silica support was functionalized with amino-groups in order to investigate the impact of surface charge on the tyrosinase loading efficiency as well as on the catalytic performance of adsorbed AbPPO4. The oxidation of various phenols was catalyzed by the AbPPO4-loaded bioconjugates, yielding high levels of conversion and confirming the retention of enzyme activity after immobilization. The structures of the oxidized products were elucidated by integrating chromatographic and spectroscopic techniques. We also evaluated the stability of the immobilized enzyme over a wide range of pH values, temperatures, storage-times and sequential catalytic cycles. Findings: This is the first report where the latent AbPPO4 is confined within silica mesopores. The improved catalytic performance of the adsorbed AbPPO4 shows the potential use of these silica-based mesoporous biocatalysts for the preparation of a column-type bioreactor for in situ identification of soil samples

    Compounds from Gum Ammoniacum with Acetylcholinesterase Inhibitory Activity

    Get PDF
    The use of herbal medicinal preparations in dementia therapy has been studied based on experience from traditional medicine. A dichloromethane extract of gum ammoniacum, the gum-resin from Dorema ammoniacum D. Don had shown acetylcholinesterase (AChE) inhibitory activity in a previous study. The aim of this study was the isolation and characterization of the active compounds from this resin. The extract was investigated by a respective colorimetric microplate assay and the active zones were identified via TLC bioautography and isolated using several chromatographic techniques. The structures of the active components were characterized by one- and two-dimensional 1H and 13C NMR spectroscopy and mass spectrometry as (2\u27S,5\u27S)-2\u27-ethenyl-5\u27-(3-hy-droxy-6-methyl-4-oxohept-5-en-2-yl)-7-methoxy-2\u27-methyl-4H-spiro[chromene-3,1\u27-cyclopentane]-2,4-dione (1), which is an analogue of doremone A and a new natural compound, and as (2\u27S,5\u27R)-2\u27-ethenyl-5\u27-[(2R,4R)-4-hydroxy-6-methyl-3-oxohept-5-en-2-yl]-7-methoxy-2\u27-methyl-4H-spiro[chromene-3,1\u27-cyclo-pentane]-2,4-dione (2 = doremone A), (4E,8E)-1-(2,4-dihydroxyphenyl)-5,9,13-trimethyltetradeca-4,8,12-trien-1-one (3 = dshamirone), and 4,7-dihydroxy-3-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]-2H-chromen-2-one (4 = am-moresinol). Dshamirone turned out to be the most active compound with an IC50 value for AChE inhibitory activity of 23.5 μM, whereas the other substances showed weak activity. The concentrations of the analytes in the resin were determined by HPLC as 3.1%, 4.6%, 1.9%, and 9.9%, respectively

    A Many-Faced Alkaloid: Polymorphism of (–)-Monophyllidin

    No full text
    The synthesis of the alkaloid (–)-monophyllidin is described. The molecule is a hybrid of xanthoxyline and (S)-proline, accessible in one-step through a Mannich reaction. In the solid-state, defined structural arrangements with different physical properties are formed. Single crystal X-ray diffraction revealed structures of six distinct polymorphs. In the crystalline state, the alkaloid can host small polar molecules (preferably water), while the (S)-proline moiety is present in the zwitterionic state. Combined with the chelate, which is already present in the xanthoxyline substructure, an ideal disposition for multiple hydrogen bond networks evolve. Therefore, highly water-soluble polymorphs of monophyllidin can form. This structural flexibility explains the many faces of the molecule in terms of structure as well as analytical data. Furthermore, speculations about the biological role of the molecule, with regard to the manifold interactions with water, are presented
    corecore