20,093 research outputs found
Dyadic Green's Functions and Guided Surface Waves for a Surface Conductivity Model of Graphene
An exact solution is obtained for the electromagnetic field due to an
electric current in the presence of a surface conductivity model of graphene.
The graphene is represented by an infinitesimally-thin, local and isotropic
two-sided conductivity surface. The field is obtained in terms of dyadic
Green's functions represented as Sommerfeld integrals. The solution of
plane-wave reflection and transmission is presented, and surface wave
propagation along graphene is studied via the poles of the Sommerfeld
integrals. For isolated graphene characterized by complex surface conductivity,
a proper transverse-electric (TE) surface wave exists if and only if the
imaginary part of conductivity is positive (associated with interband
conductivity), and a proper transverse-magnetic (TM) surface wave exists when
the imaginary part of conductivity is negative (associated with intraband
conductivity). By tuning the chemical potential at infrared frequencies, the
sign of the imaginary part of conductivity can be varied, allowing for some
control over surface wave properties.Comment: 9 figure
An investigation of condensation heat transfer in a closed tube containing a soluble noncondensable gas
A more exact one-dimensional condensation heat transfer model for insoluble gases was developed and compared with experimental data. Modifications to this model to accommodate soluble gas behavior were also accomplished, and the effects on gas front behavior demonstrated. Analytical models for condensation heat transfer are documented, and an optical method used for measuring gas concentration profiles is outlined. Experimental data is then presented and interpreted
AERODYNAMIC DAMPING OF A 0.02-SCALE SATURN SA-1 MODEL VIBRATING IN THE FIRST FREE-FREE BENDING MODE
Aerodynamic damping of 0.02 scale saturn sa-1 model vibrating in first free-free bending mod
WIND-TUNNEL MEASUREMENTS OF AERODYNAMIC DAMPING DERIVATIVES OF A LAUNCH VEHICLE VIBRATING IN FREE-FREE BENDING MODES AT MACH NUMBERS FROM 0.70 TO 2.87 AND COMPARISONS WITH THEORY
Wind tunnel tests of aerodynamic damping of a launch vehicl
Solar/hydrogen systems assessment. Volume 1: Solar/hydrogen systems for the 1985 - 2000 time frame
Opportunities for commercialization of systems capable of producing hydrogen from solar energy were studied. The hydrogen product costs that might be achieved by the four selected candidate systems was compared with the pricing structure and practices of the commodity gas market. Subsequently, product cost and market price match was noted to exist in the small user sector of the hydrogen marketplace. Barriers to and historical time lags in, commercialization of new technologies are reviewed. Recommendations for development and demonstration programs designed to accelerate the commercialization of the candidate systems are presented
Kinetics of the reaction of nitric oxide with hydrogen
Mixtures of NO and H2 diluted in argon or krypton were heated by incident shock waves, and the infrared emission from the fundamental vibration-rotation band of NO at 5.3 microns was used to monitor the time-varying NO concentration. The reaction kinetics were studied in the temperature range 2400-4500 K using a shock-tube technique. The decomposition of nitric oxide behind the shock was found to be modeled well by a fifteen-reaction system. A principle result of the study was the determination of the rate constant for the reaction H + NO yields N + OH, which may be the rate-limiting step for NO removal in some combustion systems. Experimental values of k sub 1 were obtained for each test through comparisons of measured and numerically predicted NO profiles
Ion Drift Meter for Dynamics Explorer
The ion drift meter for Dynamics Explorer B is discussed. It measures two mutually perpendicular angles of arrival of thermal ions with respect to the sensor look directions. These angles lie in the vertical and horizontal planes and may be thought of as pitch and yaw in the conventional aerodynamic sense. The components of the ion drift velocity along vertical and horizontal axes through the spacecraft body are derived to first order from knowledge of the spacecraft velocity vector and more accurately with additional knowledge of the component of ion drift along the sensor look direction
A theoretical investigation of the aerodynamics of slender wing-body combinations exhibiting leading-edge separation
Theoretical investigation of aerodynamics of slender wing-body combinations exhibiting leading edge separatio
Planar ion trap (retarding potential analyzer) experiment for atmosphere explorer
The retarding potential analyzer and drift meter were carried aboard all three Atmosphere Explorer spacecraft. These instruments measure the total thermal ion concentration and temperature, the bulk thermal ion velocity vector and some limited properties of the relative abundance of H(+), He(+), O(+) and molecular ions. These instruments functioned with no internal failures on all the spacecraft. On AE-E there existed some evidence for external surface contamination that damaged the integrity of the RPA sweep grids. This led to some difficulties in data reduction and interpretation that did not prove to be a disastrous problem. The AE-D spacecraft functioned for only a few months before it re-entered. During this time the satellite suffered from a nutation about the spin axis of about + or - 2 deg. This 2 deg modulation was superimposed upon the ion drift meter horizontal ion arrival angle output requiring the employment of filtering techniques to retrieve the real data
Analysis of pilot control strategy
Methods for nonintrusive identification of pilot control strategy and task execution dynamics are presented along with examples based on flight data. The specific analysis technique is Nonintrusive Parameter Identification Procedure (NIPIP), which is described in a companion user's guide (NASA CR-170398). Quantification of pilot control strategy and task execution dynamics is discussed in general terms followed by a more detailed description of how NIPIP can be applied. The examples are based on flight data obtained from the NASA F-8 digital fly by wire airplane. These examples involve various piloting tasks and control axes as well as a demonstration of how the dynamics of the aircraft itself are identified using NIPIP. Application of NIPIP to the AFTI/F-16 flight test program is discussed. Recommendations are made for flight test applications in general and refinement of NIPIP to include interactive computer graphics
- …