20,728 research outputs found
Study of hot wire techniques in low density flows with high turbulence levels
Prediction of heat, mass, species, and momentum fluxes in a space vehicle and aerodynamic noise production by supersonic jet and rocket exhausts requires a predictability of the associated turbulence fields. The hot wire is a technique that will allow an experimental determination of turbulent properties
Cost effective control of urban smog. A report of a conference held at the Federal Reserve Bank of Chicago, June 7-8, 1993
Environmental protection
Feasibility study of a 110 watt per kilogram lightweight solar array system
An investigation of the feasibility of a solar array panel subsystem which will produce 10,000 watts of electrical output at 1 A.U. with an overall beginning-of-life power-to-weight ratio of at least 110 watt/kg is reported. A description of the current baseline configuration which meets these requirements is presented. A parametric analysis of the single boom, two blanket planar solar array system was performed to arrive at the optimum system aspect ratio. A novel concept for the stiffening of a lightweight solar array by canting the solar cell blankets at a small angle to take advantage of the inherent in-plane stiffness to increase the symmetric out-of-plane frequency is introduced along with a preliminary analysis of the stiffening effect. A comparison of welded and soldered solar cell interconnections leads to the conclusion that welding is required on this ultralightweight solar array. The use of a boron/aluminum composite material in a BI-STEM type deployable boom is investigated as a possible advancement in the state-of-the-art
Desynchronization of pulse-coupled oscillators with delayed excitatory coupling
Collective behavior of pulse-coupled oscillators has been investigated
widely. As an example of pulse-coupled networks, fireflies display many kinds
of flashing patterns. Mirollo and Strogatz (1990) proposed a pulse-coupled
oscillator model to explain the synchronization of South East Asian fireflies
({\itshape Pteroptyx malaccae}). However, transmission delays were not
considered in their model. In fact, the presence of transmission delays can
lead to desychronization. In this paper, pulse-coupled oscillator networks with
delayed excitatory coupling are studied. Our main result is that under
reasonable assumptions, pulse-coupled oscillator networks with delayed
excitatory coupling can not achieve complete synchronization, which can explain
why another species of fireflies ({\itshape Photinus pyralis}) rarely
synchronizes flashing. Finally, two numerical simulations are given. In the
first simulation, we illustrate that even if all the initial phases are very
close to each other, there could still be big variations in the times to
process the pulses in the pipeline. It implies that asymptotical
synchronization typically also cannot be achieved. In the second simulation, we
exhibit a phenomenon of clustering synchronization
Quantum Degenerate Systems
Degenerate dynamical systems are characterized by symplectic structures whose
rank is not constant throughout phase space. Their phase spaces are divided
into causally disconnected, nonoverlapping regions such that there are no
classical orbits connecting two different regions. Here the question of whether
this classical disconnectedness survives quantization is addressed. Our
conclusion is that in irreducible degenerate systems --in which the degeneracy
cannot be eliminated by redefining variables in the action--, the
disconnectedness is maintained in the quantum theory: there is no quantum
tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces
are boundaries separating distinct physical systems, not only classically, but
in the quantum realm as well. The relevance of this feature for gravitation and
Chern-Simons theories in higher dimensions cannot be overstated.Comment: 18 pages, no figure
- …