5,076 research outputs found

    Political trials and the suppression of popular radicalism in England, 1799-1820

    Get PDF
    This chapter examines the decision-making process between the Home Office and the government’s law officers in prosecuting individuals for sedition and treason in the period 1799–1820. The term state trial suggests a more centralised and government-led repression of popular radicalism than the process was in practice. Provincial reformers also faced the complex layers of their local justice system, which was more loyalist, committed to stamping out political radicalism. The trial of the “Thirty Eight” Manchester radicals in June 1812 demonstrates the mutable definitions of treason, sedition and processes of justice in the theatre of the court.Peer reviewe

    Controlling the quantum dynamics of a mesoscopic spin bath in diamond

    Get PDF
    Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing

    Coupling molecular spin states by photon-assisted tunneling

    Get PDF
    Artificial molecules containing just one or two electrons provide a powerful platform for studies of orbital and spin quantum dynamics in nanoscale devices. A well-known example of these dynamics is tunneling of electrons between two coupled quantum dots triggered by microwave irradiation. So far, these tunneling processes have been treated as electric dipole-allowed spin-conserving events. Here we report that microwaves can also excite tunneling transitions between states with different spin. In this work, the dominant mechanism responsible for violation of spin conservation is the spin-orbit interaction. These transitions make it possible to perform detailed microwave spectroscopy of the molecular spin states of an artificial hydrogen molecule and open up the possibility of realizing full quantum control of a two spin system via microwave excitation.Comment: 13 pages, 9 figure

    Interventions to prevent maternal obesity before conception, during pregnancy, and post partum

    Get PDF
    Prevention of obesity in women of reproductive age is widely recognised to be important both for their health and for that of their offspring. Weight-control interventions, including drug treatment, in pregnant women who are obese or overweight have not had sufficient impact on pregnancy and birth outcomes, which suggests that the focus for intervention should include preconception or post-partum periods. Further research is needed into the long-term effects of nutritional and lifestyle interventions before conception. To improve preconception health, an integrated approach, including pregnancy prevention, planning, and preparation is needed, involving more than the primary health-care sector and adopting an ecological approach to risk reduction that addresses personal, societal, and cultural influences. Raising awareness of the importance of good health in the period before pregnancy will require a new social movement: combining bottom-up mobilisation of individuals and communities with a top-down approach from policy initiatives. Interventions to reduce or prevent obesity before conception and during pregnancy could contribute substantially to achievement of the global Sustainable Development Goals, in terms of health, wellbeing, productivity, and equity in current and future generations

    Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization

    Get PDF
    One fundamental requirement for quantum computation is to perform universal manipulations of quantum bits at rates much faster than the qubit's rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here we show that by subjecting each electron spin to a magnetic field of different magnitude we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic field gradient of several hundred milliTesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single and potentially multiple qubit operations with gate times that approach the threshold required for quantum error correction.Comment: 11 pages, 4 figures. Supplementary Material included as ancillary fil

    Observation of anomalous decoherence effect in a quantum bath at room temperature

    Get PDF
    Decoherence of quantum objects is critical to modern quantum sciences and technologies. It is generally believed that stronger noises cause faster decoherence. Strikingly, recent theoretical research discovers the opposite case for spins in quantum baths. Here we report experimental observation of the anomalous decoherence effect for the electron spin-1 of a nitrogen-vacancy centre in high-purity diamond at room temperature. We demonstrate that under dynamical decoupling, the double-transition can have longer coherence time than the single-transition, even though the former couples to the nuclear spin bath as twice strongly as the latter does. The excellent agreement between the experimental and the theoretical results confirms the controllability of the weakly coupled nuclear spins in the bath, which is useful in quantum information processing and quantum metrology.Comment: 22 pages, related paper at http://arxiv.org/abs/1102.557

    Triplet-Singlet Spin Relaxation via Nuclei in a Double Quantum Dot

    Full text link
    The spin of a confined electron, when oriented originally in some direction, will lose memory of that orientation after some time. Physical mechanisms leading to this relaxation of spin memory typically involve either coupling of the electron spin to its orbital motion or to nuclear spins. Relaxation of confined electron spin has been previously measured only for Zeeman or exchange split spin states, where spin-orbit effects dominate relaxation, while spin flips due to nuclei have been observed in optical spectroscopy studies. Using an isolated GaAs double quantum dot defined by electrostatic gates and direct time domain measurements, we investigate in detail spin relaxation for arbitrary splitting of spin states. Results demonstrate that electron spin flips are dominated by nuclear interactions and are slowed by several orders of magnitude when a magnetic field of a few millitesla is applied. These results have significant implications for spin-based information processing

    Vectorial Control of Magnetization by Light

    Get PDF
    Coherent light-matter interactions have recently extended their applications to the ultrafast control of magnetization in solids. An important but unrealized technique is the manipulation of magnetization vector motion to make it follow an arbitrarily designed multi-dimensional trajectory. Furthermore, for its realization, the phase and amplitude of degenerate modes need to be steered independently. A promising method is to employ Raman-type nonlinear optical processes induced by femtosecond laser pulses, where magnetic oscillations are induced impulsively with a controlled initial phase and an azimuthal angle that follows well defined selection rules determined by the materials' symmetries. Here, we emphasize the fact that temporal variation of the polarization angle of the laser pulses enables us to distinguish between the two degenerate modes. A full manipulation of two-dimensional magnetic oscillations is demonstrated in antiferromagnetic NiO by employing a pair of polarization-twisted optical pulses. These results have lead to a new concept of vectorial control of magnetization by light

    Driven coherent oscillations of a single electron spin in a quantum dot

    Full text link
    The ability to control the quantum state of a single electron spin in a quantum dot is at the heart of recent developments towards a scalable spin-based quantum computer. In combination with the recently demonstrated exchange gate between two neighbouring spins, driven coherent single spin rotations would permit universal quantum operations. Here, we report the experimental realization of single electron spin rotations in a double quantum dot. First, we apply a continuous-wave oscillating magnetic field, generated on-chip, and observe electron spin resonance in spin-dependent transport measurements through the two dots. Next, we coherently control the quantum state of the electron spin by applying short bursts of the oscillating magnetic field and observe about eight oscillations of the spin state (so-called Rabi oscillations) during a microsecond burst. These results demonstrate the feasibility of operating single-electron spins in a quantum dot as quantum bits.Comment: Total 25 pages. 11 pages main text, 5 figures, 9 pages supplementary materia

    An Ultra-High Discrimination Y Chromosome Short Tandem Repeat Multiplex DNA Typing System

    Get PDF
    In forensic casework, Y chromosome short tandem repeat markers (Y-STRs) are often used to identify a male donor DNA profile in the presence of excess quantities of female DNA, such as is found in many sexual assault investigations. Commercially available Y-STR multiplexes incorporating 12–17 loci are currently used in forensic casework (Promega's PowerPlex® Y and Applied Biosystems' AmpFlSTR® Yfiler®). Despite the robustness of these commercial multiplex Y-STR systems and the ability to discriminate two male individuals in most cases, the coincidence match probabilities between unrelated males are modest compared with the standard set of autosomal STR markers. Hence there is still a need to develop new multiplex systems to supplement these for those cases where additional discriminatory power is desired or where there is a coincidental Y-STR match between potential male participants. Over 400 Y-STR loci have been identified on the Y chromosome. While these have the potential to increase the discrimination potential afforded by the commercially available kits, many have not been well characterized. In the present work, 91 loci were tested for their relative ability to increase the discrimination potential of the commonly used ‘core’ Y-STR loci. The result of this extensive evaluation was the development of an ultra high discrimination (UHD) multiplex DNA typing system that allows for the robust co-amplification of 14 non-core Y-STR loci. Population studies with a mixed African American and American Caucasian sample set (n = 572) indicated that the overall discriminatory potential of the UHD multiplex was superior to all commercial kits tested. The combined use of the UHD multiplex and the Applied Biosystems' AmpFlSTR® Yfiler® kit resulted in 100% discrimination of all individuals within the sample set, which presages its potential to maximally augment currently available forensic casework markers. It could also find applications in human evolutionary genetics and genetic genealogy
    corecore