564 research outputs found
Investigation of surface water behavior during glaze ice accretion
A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior
The influence of ice accretion physics on the forecasting of aircraft icing conditions
The physics which control aircraft ice accretion are reviewed in the context of identifying and forecasting hazardous icing conditions. The severity of aircraft icing is found to be extremely sensitive to temperature, liquid water content and droplet size distribution particularly near the transition between rime and mixed icing. The difficulty in measurement and the variability of these factors with altitude, position and time coupled with variable aircraft sensitivity make forecasting and identifying icing conditions difficult. Automated Pilot Reports (PIREPS) are suggested as one mechanism for improving the data base necessary to forecast icing conditions
Experimental evaluation of candidate graphical microburst alert displays
A piloted flight simulator experiment was conducted to evaluate issues related to the display of microburst alerts on electronic cockpit instrumentation. Issues addressed include display clarity, usefulness of multilevel microburst intensity information, and whether information from multiple sensors should be presented separately or 'fused' into combined alerts. Nine active airline pilots of 'glass cockpit' aircraft participated in the study. Microburst alerts presented on a moving map display were found to be visually clear and useful to pilots. Also, multilevel intensity information coded by colors or patterns was found to be important for decision making purposes. Pilot opinion was mixed on whether to 'fuse' data from multiple sensors, and some resulting design tradeoffs were identified. The positional information included in the graphical alert presentation was found useful by the pilots for planning lateral missed approach maneuvers, but may result in deviations which could interfere with normal airport operations. A number of flight crew training issues were also identified
Cockpit display of hazardous weather information
Information transfer and display issues associated with the dissemination of hazardous weather warnings are studied in the context of windshear alerts. Operational and developmental windshear detection systems are briefly reviewed. The July 11, 1988 microburst events observed as part of the Denver Terminal Doppler Weather Radar (TDWR) operational evaluation are analyzed in terms of information transfer and the effectiveness of the microburst alerts. Information transfer, message content and display issues associated with microburst alerts generated from ground based sources are evaluated by means of pilot opinion surveys and part task simulator studies
An experimental low Reynolds number comparison of a Wortmann FX67-K170 airfoil, a NACA 0012 airfoil and a NACA 64-210 airfoil in simulated heavy rain
Wind tunnel experiments were conducted on Wortmann FX67-K170, NACA 0012, and NACA 64-210 airfoils at rain rates of 1000 mm/hr and Reynolds numbers of 310,000 to compare the aerodynamic performance degradation of the airfoils and to attempt to identify the various mechanisms which affect performance in heavy rain conditions. Lift and drag were measured in dry and wet conditions, a variety of flow visualization techniques were employed, and a computational code which predicted airfoil boundary layer behavior was used. At low angles of attack, the lift degradation in wet conditions varied significantly between the airfoils. The Wortmann section had the greatest overall lift degradation and the NACA 64-210 airfoil had the smallest. At high angles of attack, the NACA 64-210 and 0012 airfoils had improved aerodynamic performance in rain conditions due to an apparent reduction of the boundry layer separation. Performance degradation in heavy rain for all three airfoils at low angles of attack could be emulated by forced boundary layer transition near the leading edge. The secondary effect occurs at time scales consistent with top surface water runback times. The runback layer is thought to effectively alter the airfoil geometry. The severity of the performance degradation for the airfoils varied. The relative differences appeared to be related to the susceptibility of each airfoil to premature boundary layer transition
Hazard evaluation and operational cockpit display of ground-measured windshear data
Low-altitude windshear is the leading weather-related cause of fatal aviation accidents in the U.S. Since 1964, there have been 26 accidents attributed to windshear resulting in over 500 fatalities. Low-altitude windshear can take several forms, including macroscopic forms such as cold-warm gustfronts down to the small, intense downdrafts known as microbursts. Microbursts are particularly dangerous and difficult to detect due to their small size, short duration, and occurrence under both heavy precipitation and virtually dry conditions. For these reasons, the real-time detection of windshear hazards is a very active field of research. Also, the advent of digital ground-to-air datalinks and electronic flight instrumentation opens up many options for implementation of windshear alerts in the terminal area environment. Study is required to determine the best content, format, timing, and cockpit presentation of windshear alerts in the modern ATC environment to best inform the flight crew without significantly increasing crew workload
Cockpit display of hazardous wind shear information
Information on cockpit display of wind shear information is given in viewgraph form. Based on the current status of windshear sensors and candidate data dissemination systems, the near-term capabilities for windshear avoidance will most likely include: (1) Ground-based detection: TDWR (Terminal Doppler Weather Radar), LLWAS (Low-Level Windshear Alert System), Automated PIREPS; (2) Ground-Air datalinks: Air traffic control voice channels, Mode-S digital datalink, ACARS alphanumeric datalink. The possible datapaths for integration of these systems are illustrated in a diagram. In the future, airborne windshear detection systems such as lidars, passive IR detectors, or airborne Doppler radars may also become available. Possible future datalinks include satellite downlink and specialized en route weather channels
Alert generation and cockpit presentation for an integrated microburst alerting system
Alert generation and cockpit presentation issues for low level wind shear (microburst) alerts are investigated. Alert generation issues center on the development of a hazard criterion which allows integration of both ground based and airborne wind shear detection systems to form an accurate picture of the aviation hazard posed by a particular wind shear situation. A methodology for the testing of a hazard criteria through flight simulation has been developed, and has been used to examine the effectiveness and feasibility of several possible criteria. Also, an experiment to evaluate candidate graphical cockpit displays for microburst alerts using a piloted simulator has been designed
Heat transfer on accreting ice surfaces
Based on previous observations of glaze ice accretion on aircraft surfaces, a multizone model with distinct zones of different surface roughness is demonstrated. The use of surface roughness in the LEWICE ice accretion prediction code is examined. It was found that roughness is used in two ways: (1) to determine the laminar to turbulent boundary-layer transition location; and (2) to calculate the convective turbulent heat-transfer coefficient. A two-zone version of the multizone model is implemented in the LEWICE code, and compared with experimental convective heat-transfer coefficient and ice accretion results. The analysis of the boundary-layer transition, surface roughness, and viscous flowfield effects significantly increased the accuracy in predicting heat-transfer coefficients. The multizone model was found to significantly improve the ice accretion prediction for the cases compared
Experimental methodologies to support aircraft icing analysis
The experimental methodologies are illustrated by graphs, charts and line drawings. Typical ultrasonic echo signals for dry and wet ice growth, ice accretion rates for various tunnel configurations, the experimental configuration for flight tests of the ultrasonic measuring system and heat balance models used to predict ice growth are among the topics that are illustrated and briefly discussed
- …