71 research outputs found

    Photo2Relief: Let Human in the Photograph Stand Out

    Full text link
    In this paper, we propose a technique for making humans in photographs protrude like reliefs. Unlike previous methods which mostly focus on the face and head, our method aims to generate art works that describe the whole body activity of the character. One challenge is that there is no ground-truth for supervised deep learning. We introduce a sigmoid variant function to manipulate gradients tactfully and train our neural networks by equipping with a loss function defined in gradient domain. The second challenge is that actual photographs often across different light conditions. We used image-based rendering technique to address this challenge and acquire rendering images and depth data under different lighting conditions. To make a clear division of labor in network modules, a two-scale architecture is proposed to create high-quality relief from a single photograph. Extensive experimental results on a variety of scenes show that our method is a highly effective solution for generating digital 2.5D artwork from photographs.Comment: 10 pages, 11 figure

    A 4.8-kW high-efficiency 1050-nm monolithic fiber laser amplifier employing a pump-sharing structure

    Get PDF
    The power scaling of ytterbium-doped fiber (YDF) lasers emitting at the wavelength range of 1030 nm–1060 nm has been limited by amplified spontaneous emission (ASE), stimulated Raman scattering (SRS) effect, and transverse mode instability (TMI). These effects pose challenges in achieving a high-output power laser within the range of 1030 nm–1060 nm while maintaining a high signal-to-noise ratio. Based on a counter-pumped fiber laser amplifier utilizing our self-developed ytterbium-doped fiber, we have successfully showcased a 4.8-kW laser output at 1050 nm, accompanied by an 85.3% slope efficiency and nearly diffraction-limited beam quality. By effectively applying ASE and TMI, and controlling the Raman Stokes at ∼17 dB below the primary signal wavelength, we have achieved optimal performance at the maximum power level. This high efficiency has been attained through a pump-sharing structure combined with cost-effective, non-wavelength-stabilized 976-nm laser diodes

    Finite element analysis of endoscopic cross-overtop decompression for single-segment lumbar spinal stenosis based on real clinical cases

    Get PDF
    Introduction: For severe degenerative lumbar spinal stenosis (DLSS), the conventional percutaneous endoscopic translaminar decompression (PEID) has some limitations. The modified PEID, Cross-Overtop decompression, ensures sufficient decompression without excessive damage to the facet joints and posterior complex integrity.Objectives: To evaluate the biomechanical properties of Cross-Overtop and provide practical case validation for final decision-making in severe DLSS treatment.Methods: A finite element (FE) model of L4-L5 (M0) was established, and the validity was verified against prior studies. Endo-ULBD (M1), Endo-LOVE (M2), and Cross-Overtop (M3) models were derived from M0 using the experimental protocol. L4-L5 segments in each model were evaluated for the range of motion (ROM) and disc Von Mises stress extremum. The real clinical Cross-Overtop model was constructed based on clinical CT images, disregarding paraspinal muscle influence. Subsequent validation using actual FE analysis results enhances the credibility of the preceding virtual FE analysis.Results: Compared with M0, ROM in surgical models were less than 10°, and the growth rate of ROM ranged from 0.10% to 11.56%, while those of disc stress ranged from 0% to 15.75%. Compared with preoperative, the growth rate of ROM and disc stress were 2.66%–11.38% and 1.38%–9.51%, respectively. The ROM values in both virtual and actual models were less than 10°, verifying the affected segment stability after Cross-Overtop decompression.Conclusion: Cross-Overtop, designed for fully expanding the central canal and contralateral recess, maximizing the integrity of the facet joints and posterior complex, does no significant effect on the affected segmental biomechanics and can be recommended as an effective endoscopic treatment for severe DLSS

    A Magnetic Bead-Integrated Chip for the Large Scale Manufacture of Normalized esiRNAs

    Get PDF
    The chemically-synthesized siRNA duplex has become a powerful and widely used tool for RNAi loss-of-function studies, but suffers from a high off-target effect problem. Recently, endoribonulease-prepared siRNA (esiRNA) has been shown to be an attractive alternative due to its lower off-target effect and cost effectiveness. However, the current manufacturing method for esiRNA is complicated, mainly in regards to purification and normalization on a large-scale level. In this study, we present a magnetic bead-integrated chip that can immobilize amplification or transcription products on beads and accomplish transcription, digestion, normalization and purification in a robust and convenient manner. This chip is equipped to manufacture ready-to-use esiRNAs on a large-scale level. Silencing specificity and efficiency of these esiRNAs were validated at the transcriptional, translational and functional levels. Manufacture of several normalized esiRNAs in a single well, including those silencing PARP1 and BRCA1, was successfully achieved, and the esiRNAs were subsequently utilized to effectively investigate their synergistic effect on cell viability. A small esiRNA library targeting 68 tyrosine kinase genes was constructed for a loss-of-function study, and four genes were identified in regulating the migration capability of Hela cells. We believe that this approach provides a more robust and cost-effective choice for manufacturing esiRNAs than current approaches, and therefore these heterogeneous RNA strands may have utility in most intensive and extensive applications

    Large-scale identification of functional genes regulating cancer cell migration and metastasis using the self-assembled cell microarray

    Get PDF
    Metastasis is one of the critical hallmarks of malignancy tumor and the principal cause of death in patients with cancer. Cell migration is the basic and essential step in cancer metastasis process. To systematically investigate functional genes regulating cell migration and cancer metastasis on large scale, we developed a novel on-chip method, SAMcell (self-assembled cell microarray). This method was demonstrated to be particularly suitable for loss-of-function high-throughput screening because of its unique advantages. The first application of SAMcell was to screen human genome miRNAs, considering that more and more miRNAs had been proved to govern cancer metastasis. We found that over 20 % of miRNAs have migratory regulation activity in diverse cell types, indicating a general involvement of miRNAs in migratory regulation. Through triple-round screenings, we discovered miR-23b, which is down-regulated in human colon cancer samples, potently mediates the multiple steps of metastasis, including cell motility, cell growth and cell survival. In parallel, the second application of SAMcell was to screen human genome kinase genes, considering that more and more kinase genes had become successful diagnostic marker or drug targets. We found over 11% migratory kinase genes, suggesting the important role of kinase group in metastasis regulation. Through both functional screening and bioinformatics analysis, we discovered and validated 6 prospective metastasis-related kinase genes, which can be new potential targets in cancer therapy. These findings allow the understanding of regulation mechanism in human cancer progression, especially metastasis and provide the new insight into the biological and therapeutical importance of miRNAs or kinases in cancer.Ph.D

    Improving the Stability of Lithium Aluminum Germanium Phosphate with Lithium Metal by Interface Engineering

    No full text
    Lithium aluminum germanium phosphate (LAGP) solid electrolyte is receiving increasing attention due to its high ionic conductivity and low air sensitivity. However, the poor interface compatibility between lithium (Li) metal and LAGP remains the main challenge in developing all-solid-state lithium batteries (ASSLB) with a long cycle life. Herein, this work introduces a thin aluminum oxide (Al2O3) film on the surface of the LAGP pellet as a physical barrier to Li/LAGP interface by the atomic layer deposition technique. It is found that this layer induces the formation of stable solid electrolyte interphase, which significantly improves the structural and electrochemical stability of LAGP toward metallic Li. As a result, the optimized symmetrical cell exhibits a long lifetime of 360 h with an areal capacity of 0.2 mAh cm−2 and a current density of 0.2 mA cm−2. This strategy provides new insights into the stabilization of the solid electrolyte/Li interface to boost the development of ASSLB.Applied Science, Faculty ofOther UBCEngineering, School of (Okanagan)ReviewedFacultyResearche

    Full endoscopic laminotomy decompression versus anterior cervical discectomy and fusion for the treatment of single-segment cervical spinal stenosis: a retrospective, propensity score-matched study

    No full text
    Abstract Objective Anterior cervical discectomy and fusion (ACDF) is the standard procedure for the treatment of cervical spinal stenosis (CSS), but complications such as adjacent segment degeneration can seriously affect the long-term efficacy. Currently, posterior endoscopic surgery has been increasingly used in the clinical treatment of CSS. The aim of this study was to compare the clinical outcomes of single-segment CSS patients who underwent full endoscopic laminotomy decompression or ACDF. Methods 138 CSS patients who met the inclusion criteria from June 2018 to August 2020 were retrospectively analyzed and divided into endoscopic and ACDF groups. The propensity score matching (PSM) method was used to adjust the imbalanced confounding variables between the groups. Then, perioperative data were recorded and clinical outcomes were compared, including functional scores and imaging data. Functional scores included Visual Analog Scale of Arms (A-VAS) and Neck pain (N-VAS), Japanese Orthopedic Association score (JOA), Neck Disability Index (NDI), and imaging data included Disc Height Index (DHI), Cervical range of motion (ROM), and Ratio of grey scale (RVG). Results After PSM, 84 patients were included in the study and followed for 24–30 months. The endoscopic group was significantly superior to the ACDF group in terms of operative time, intraoperative blood loss, incision length, and hospital stay (P  0.05). Conclusion Full endoscopic laminotomy decompression is demonstrated to be an efficacious alternative technique to traditional ACDF for the treatment of single-segment CSS, with the advantages of less trauma, faster recovery, and less impact on cervical spine kinematics and adjacent segmental degeneration

    High Power Linearly Polarized Raman Fiber Laser With Stable Temporal Output

    No full text
    Abstract We demonstrate a high power linearly polarized Raman fiber laser (RFL) pumped by an amplified spontaneous emission (ASE) source. Temporal-stable operation of RFL could be ensured owing to the employment of ASE, which mitigates the inherent intensity noise compared with the classic scheme adopting laser oscillator as pump source. In this experiment, the RFL has up to 119.5 W output power, with central wavelength of 1129.2 nm, and full width at half maximum (FWHM) linewidth of about 4.18 nm. The polarization extinction ratio (PER) of the Raman laser is about 23 dB. Moreover, this laser has excellent long-term and short-term stabilities in terms of the output power and time domain

    A flow-cytometry-based protocol for detection of mitochondrial ROS production under hypoxia

    No full text
    Summary: Hypoxia is known to stimulate mitochondrial reactive oxygen species (mROS) in cells. Here, we present a detailed protocol to detect mROS using MitoSOX staining in live cells under normoxia and hypoxia. Flow cytometry allows sensitive and reliable quantification of mROS by FlowJo software. We optimized several aspects of the procedure including hypoxic treatment, working concentrations of the staining buffer, and quantitative analyses. Here, we use HepG2 cells, but the protocol can be applied to other cell lines.For complete details on the use and execution of this protocol, please refer to Yang et al. (2020)
    • …
    corecore