26 research outputs found

    Deciphering the molecular mechanism of enhanced tumor activity of the EGFR variant T790M/L858R using melanoma cell lines

    Get PDF
    IntroductionThe abnormal expression and mutagenesis of EGFR drives both the development and progression of a multitude of human cancers. Further mutations within the tyrosine kinase region of the EGFR subsequently contribute to resistance to targeted drugs. What is not known is how these mutations affect progression-related behaviors of cancer cells.MethodsThe mutagenesis of EGFR T790M, L858R, and T790M/L858R was performed via oligo primer-guided polymerase chain reaction (PCR). GFP-tagged mammalian expression vectors were constructed and confirmed. Stable melanoma cell lines WM983A and WM983B expressing WT or mutant EGFRs were generated for determining the functions of WT and mutant EGFRs in migration, invasion, and resistance to doxorubicin. Immunoblotting and immunofluorescence were performed to detect the transphosphorylation and autophosphorylation of WT and mutant EGFRs and other molecules.ResultsThe EGFR mutant T790M/L858R showed significantly higher basal autophosphorylation in melanoma cell lines WM983A and WM983B. Overexpression of WT EGFR significantly enhanced the protein level of E-cadherin (E-cad) via upregulating its mRNA. In contrast, L858R significantly downregulated E-cad. Biological activity assays show that T790M/L858R presented significant enhancement in vitro in invasion and migration, while WT and T790M moderately inhibited invasion and migration. In WM983A cells, enhanced invasion and migration by T790M/L858R required the downstream signaling pathways through Akt and p38. T790M/L858R dramatically triggers phosphorylation of actin cross-linking protein alpha-actinin-4 in the absence of EGF. This double mutant also conferred resistance to a general chemotherapy doxorubicin through Akt but not the p38 signaling pathway.ConclusionThese findings suggest that T790M/L858R not only confers enhanced therapeutic resistance in cancer cell lines but also may promote tumor metastasis via its boosted downstream signaling pathways and/or direct phosphorylation of other key proteins

    Tyro3-mediated phosphorylation of ACTN4 at tyrosines is FAK-dependent and decreases susceptibility to cleavage by m-Calpain

    Get PDF
    Tyro3, a member of TAM receptor tyrosine kinase family, has been implicated in the regulation of melanoma progression and survival. In this study, we sought the molecular mechanism of Tyro3 effects avoiding endogenous background by overexpression of Tyro3 in fibroblasts that have negligible levels of Tyro3. This introduction triggers the tyrosyl-phosphorylation of ACTN4, a member of actin binding protein family involved in motility, a behavior critical for invasive progression, as shown by siRNA to Tyro3 limiting melanoma cell migration and invasion. Tyro3-mediated phosphorylation of ACTN4 required FAK activation at tyrosine 397 and the EGF receptor cascade, but not EGFR ligand binding. Using PCR-based mutagenesis, the sites of Tyro3-mediated ACTN4 phosphorylation were mapped to ACTN4 tyrosine 11 and 13, and this occurs in conjunction with EGF-mediated phosphorylation on Y4 and Y31. Interestingly, Tyro3-mediated phosphorylation only slightly decreases the actin binding activity of ACTN4. However, this rendered the phosphorylated ACTN4 resistant to the m-calpain cleavage between Y13 and G14, a limited proteolysis that prevents growth factor regulation of ACTN4 interaction with F-actin. Overexpression of both WT ACTN4 and ACTN4Y11/13E, a mimic of ACTN4 phosphorylated at tyrosine 11 and 13, in melanoma WM983b cells resulted in a likely mesenchymal to amoeboidal transition. ACTN4Y11/13E-expressing cells were more amoeboidal, less migratory on collagen I gel coated surface but more invasive through collagen networks. In parallel, expression of ACTN4Y11/13E, in ACTN4 knockdown melanoma WM1158 cells resulted in an increase of invasion compared to WT ACTN4. These findings suggest that Tyro3-mediated phosphorylation of ACTN4 is involved in invasion of melanoma cells. Keywords: Actinin-4; Tyro3; Phosphorylation; Migratio

    Tandem phosphorylation within an intrinsically disordered region regulates ACTN4 function

    Get PDF
    Phosphorylated residues occur preferentially in the intrinsically disordered regions of eukaryotic proteins. In the disordered amino-terminal region of human a-actinin-4 (ACTN4), Tyr[superscript 4] and Tyr[superscript 31] are phosphorylated in cells stimulated with epidermal growth factor (EGF), and a mutant with phosphorylation-mimicking mutations of both tyrosines exhibits reduced interaction with actin in vitro. Cleavage of ACTN4 by m-calpain, a protease that in motile cells is predominantly activated at the rear, removes the Tyr[superscript 4] site. We found that introducing a phosphomimetic mutation at only Tyr[superscript 31] was sufficient to inhibit the interaction with actin in vitro. However, molecular dynamics simulations predicted that Tyr[superscript 31] is mostly buried and that phosphorylation of Tyr[superscript 4] would increase the solvent exposure and thus kinase accessibility of Tyr[superscript 31]. In fibroblast cells, EGF stimulation increased tyrosine phosphorylation of a mutant form of ACTN4 with a phosphorylation-mimicking residue at Tyr[superscript 4], whereas a truncated mutant representing the product of m-calpain cleavage exhibited EGF-stimulated tyrosine phosphorylation at a background amount similar to that observed for a double phosphomimetic mutant of Tyr[superscript 4] and Tyr[superscript 31]. We also found that inhibition of the receptor tyrosine kinases of the TAM family, such as AXL, blocked EGF-stimulated tyrosine phosphorylation of ACTN4. Mathematical modeling predicted that the kinetics of phosphorylation at Tyr[superscript 31] can be dictated by the kinase affinity for Tyr[superscript 4]. This study suggests that tandem-site phosphorylation within intrinsically disordered regions provides a mechanism for a site to function as a switch to reveal a nearby function-regulating site.National Institutes of Health (U.S.) (Grant R01 GM69668

    COVID-19 in Japan: What could happen in the future? (Recent developments on inverse problems for partial differential equations and their applications)

    Get PDF
    This paper was finished in February, 2020 and posted in MedRxiv on Feb. 28th, 2020.COVID-19 has been impacting on the whole world critically and constantly Since December 2019. We have independently developed a novel statistical time delay dynamic model on the basis of the distribution models from CCDC. Based only on the numbers of confirmed cases in different regions in China, the model can clearly reveal that the containment of the epidemic highly depends on early and effective isolation. We apply the model on the epidemic in Japan and conclude that there could be a rapid outbreak in Japan if no effective quarantine measures are carried out immediately

    α-Actinin-4 Is Essential for Maintaining the Spreading, Motility and Contractility of Fibroblasts

    Get PDF
    Background: α-actinins cross-link actin filaments, with this cross-linking activity regulating the formation of focal adhesions, intracellular tension, and cell migration. Most non-muscle cells such as fibroblasts express two isoforms, α-actinin-1 (ACTN1) and α-actinin-4 (ACTN4). The high homology between these two isoforms would suggest redundancy of their function, but recent studies have suggested different regulatory roles. Interestingly, ACTN4 is phosphorylated upon growth factor stimulation, and this loosens its interaction with actin. Methodology/Principal Findings: Using molecular, biochemical and cellular techniques, we probed the cellular functions of ACTN4 in fibroblasts. Knockdown of ACTN4 expression in murine lung fibroblasts significantly impaired cell migration, spreading, adhesion, and proliferation. Surprisingly, knockdown of ACTN4 enhanced cellular compaction and contraction force, and increased cellular and nuclear cross-sectional area. These results, except the increased contractility, are consistent with a putative role of ACTN4 in cytokinesis. For the transcellular tension, knockdown of ACTN4 significantly increased the expression of myosin light chain 2, a element of the contractility machinery. Re-expression of wild type human ACTN4 in ACTN4 knockdown murine lung fibroblasts reverted cell spreading, cellular and nuclear cross-sectional area, and contractility back towards baseline, demonstrating that the defect was due to absence of ACTN4. Significance: These results suggest that ACTN4 is essential for maintaining normal spreading, motility, cellular and nuclear cross-sectional area, and contractility of murine lung fibroblasts by maintaining the balance between transcellular contractility and cell-substratum adhesion. © 2010 Shao et al

    Axl contributes to efficient migration and invasion of melanoma cells.

    No full text
    Axl, a member of the TAM receptor family has been broadly suggested to play a key role in tumor metastasis. However, the function of Axl in the invasion and metastasis of melanoma, the most lethal skin cancer, remains largely unknown. In the present study, we found that melanoma cell lines present variable protein levels of Axl and Tyro3; interestingly, MerTK is not noted at detectable levels in any of tested MGP (metastatic growth phase) cell lines. Treatment with recombinant human Gas6 significantly activates Akt in the Axl-expressing WM852 and IgR3 lines but just slightly in WM1158. IgR3, WM852 and WM1158 demonstrate different autocrine signaling. Knockdown of Axl by siRNA or the treatment with Axl-specific inhibitor R428 dramatically inhibits the migration and invasion of both IgR3 and WM852 in vitro. These findings suggest that Axl enhances the invasion of melanoma cells

    Tyro3 carboxyl terminal region confers stability and contains the autophosphorylation sites

    No full text
    Tyro3, a member of TAM receptor tyrosine kinase family has been suggested to be autophosphorylated upon activation. In the current study we mapped the autophosphorylation sites of murine Tyro3 to tyrosine 723 and 756, with K540 being required for its kinase activity. Knockdown of Axl significantly decreases the tyrosyl-phosphorylation of Tyro3 in fibroblasts NR6WT, suggesting an interaction among the TAM family members. Interestingly, the carboxyl terminal region of Tyro3 is required for its stability in cells with a minimal length of 1–778 amino acids which is not conserved in murine Axl, a member of TAM. These data suggest that the autophosphorylation sites of TAM RTK members are unique although they share high similarity in amino acids within their carboxyl kinase domain. Keywords: Tyro3 receptor tyrosine kinase; Autophosphorylation; Protein stability; TAM family kinasesNational Institute of General Medical Sciences (U.S.) (Award GM69668)National Institute of General Medical Sciences (U.S.) (Award GM63569

    m-calpain Activation Is Regulated by Its Membrane Localization and by Its Binding to Phosphatidylinositol 4,5-Bisphosphate*

    No full text
    International audiencem-calpain plays a critical role in cell migration enabling rear de-adhesion of adherent cells by cleaving structural components of the adhesion plaques. Growth factors and chemokines regulate keratinocyte, fibroblast, and endothelial cell migration by modulating m-calpain activity. Growth factor receptors activate m-calpain secondary to phosphorylation on serine 50 by ERK. Concurrently, activated m-calpain is localized to its inner membrane milieu by binding to phosphatidylinositol 4,5-bisphosphate (PIP2). Opposing this, CXCR3 ligands inhibit cell migration by blocking m-calpain activity secondary to a PKA-mediated phosphorylation in the C2-like domain. The failure of m-calpain activation in the absence of PIP2 points to a key regulatory role, although whether this PIP2-mediated membrane localization is regulatory for m-calpain activity or merely serves as a docking site for ERK phosphorylation is uncertain. Herein, we report the effects of two CXCR3 ligands, CXCL11/IP-9/I-TAC and CXCL10/IP-10, on the EGF- and VEGF-induced redistribution of m-calpain in human fibroblasts and endothelial cells. The two chemokines block the tail retraction and, thus, the migration within minutes, preventing and reverting growth factor-induced relocalization of m-calpain to the plasma membrane of the cells. PKA phosphorylation of m-calpain blocks the binding of the protease to PIP2. Unexpectedly, we found that this was due to membrane anchorage itself and not merely serine 50 phosphorylation, as the farnesylation-induced anchorage of m-calpain triggers a strong activation of this protease, leading notably to an increased cell death. Moreover, the ERK and PKA phosphorylations have no effect on this membrane-anchored m-calpain. However, the presence of PIP2 is still required for the activation of the anchored m-calpain. In conclusion, we describe a novel mechanism of m-calpain activation by interaction with the plasma membrane and PIP2 specifically, this phosphoinositide acting as a cofactor for the enzyme. The phosphorylation of m-calpain by ERK and PKA by growth factors and chemokines, respectively, act in cells to regulate the enzyme only indirectly by controlling its redistribution

    m-calpain Activation Is Regulated by Its Membrane Localization and by Its Binding to Phosphatidylinositol 4,5-Bisphosphate*

    No full text
    International audiencem-calpain plays a critical role in cell migration enabling rear de-adhesion of adherent cells by cleaving structural components of the adhesion plaques. Growth factors and chemokines regulate keratinocyte, fibroblast, and endothelial cell migration by modulating m-calpain activity. Growth factor receptors activate m-calpain secondary to phosphorylation on serine 50 by ERK. Concurrently, activated m-calpain is localized to its inner membrane milieu by binding to phosphatidylinositol 4,5-bisphosphate (PIP2). Opposing this, CXCR3 ligands inhibit cell migration by blocking m-calpain activity secondary to a PKA-mediated phosphorylation in the C2-like domain. The failure of m-calpain activation in the absence of PIP2 points to a key regulatory role, although whether this PIP2-mediated membrane localization is regulatory for m-calpain activity or merely serves as a docking site for ERK phosphorylation is uncertain. Herein, we report the effects of two CXCR3 ligands, CXCL11/IP-9/I-TAC and CXCL10/IP-10, on the EGF- and VEGF-induced redistribution of m-calpain in human fibroblasts and endothelial cells. The two chemokines block the tail retraction and, thus, the migration within minutes, preventing and reverting growth factor-induced relocalization of m-calpain to the plasma membrane of the cells. PKA phosphorylation of m-calpain blocks the binding of the protease to PIP2. Unexpectedly, we found that this was due to membrane anchorage itself and not merely serine 50 phosphorylation, as the farnesylation-induced anchorage of m-calpain triggers a strong activation of this protease, leading notably to an increased cell death. Moreover, the ERK and PKA phosphorylations have no effect on this membrane-anchored m-calpain. However, the presence of PIP2 is still required for the activation of the anchored m-calpain. In conclusion, we describe a novel mechanism of m-calpain activation by interaction with the plasma membrane and PIP2 specifically, this phosphoinositide acting as a cofactor for the enzyme. The phosphorylation of m-calpain by ERK and PKA by growth factors and chemokines, respectively, act in cells to regulate the enzyme only indirectly by controlling its redistribution
    corecore