23 research outputs found

    Measurement precision and evaluation of the diameter profiles of single wool fibers

    Full text link
    A recent model of the Single Fiber Analyzer 3001 (SIFAN3001) was firstly employed to obtain the single wool fiber diameter profiles (SfFDPs) at multiple orientations. The results showed that using SIFAN3001 to measure fiber diameter at four orientations for 50 single fibers randomly sub-sampled from each mid-side sample can produce average fiber diameter profiles (AS fFDPs) of fibers within staples. Within the testing regime used, the precision estimates for the total samples were &plusmn;1.3 &micro;m for the mean fiber diameter of staples and 1.4 &micro;m for the average fiber diameter of the AS fFDPs at each scanned step in the diameter profile. The mean diameter ratio (ellipticity) obtained from the four orientations was 1.08&plusmn;0.01, confirming that the Merino wool fibers under review were elliptical rather than circular. The elliptical morphology of wool fibers and the precision of the fiber diameter measurement at each point along a fiber will be considered in the development of a mechanical model of Staple Strength testing.<br /

    A versatile cancer cell trapping and 1D migration assay in a microfluidic device

    Get PDF
    Highly migratory cancer cells often lead to metastasis and recurrence and are responsible for the high mortality rates in many cancers despite aggressive treatment. Recently, the migratory behavior of patient-derived glioblastoma multiforme cells on microtracks has shown potential in predicting the likelihood of recurrence, while at the same time, antimetastasis drugs have been developed which require simple yet relevant high-throughput screening systems. However, robust in vitro platforms which can reliably seed single cells and measure their migration while mimicking the physiological tumor microenvironment have not been demonstrated. In this study, we demonstrate a microfluidic device which hydrodynamically seeds single cancer cells onto stamped or femtosecond laser ablated polystyrene microtracks, promoting 1D migratory behavior due to the cells' tendency to follow topographical cues. Using time-lapse microscopy, we found that single U87 glioblastoma multiforme cells migrated more slowly on laser ablated microtracks compared to stamped microtracks of equal width and spacing (p < 0.05) and exhibited greater directional persistence on both 1D patterns compared to flat polystyrene (p < 0.05). Single-cell morphologies also differed significantly between flat and 1D patterns, with cells on 1D substrates exhibiting higher aspect ratios and less circularity (p < 0.05). This microfluidic platform could lead to automated quantification of single-cell migratory behavior due to the high predictability of hydrodynamic seeding and guided 1D migration, an important step to realizing the potential of microfluidic migration assays for drug screening and individualized medicine. Published under license by AIP Publishing

    Effects of Line and Pillar Array Microengineered SiO2 Thin Films on the Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    No full text
    A primary goal in bone tissue engineering is the design of implants that induce controlled, guided, and rapid healing. The events that normally lead to the integration of an implant into bone and determine the performance of the device occur mainly at the tissue-implant interface. Topographical surface modification of a biomaterial might be an efficient tool for inducing stem cell osteogenic differentiation and replace the use of biochemical stimuli. The main goal of this work was to develop micropatterned bioactive silica thin films to induce the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) only through topographical stimuli. Line and pillar micropatterns were developed by a combination of sol-gel/soft lithography and characterized by scanning electron microscopy, atomic force microscopy, and contact angle measurements. hMSCs were cultured onto the microfabricated thin films and flat control for up to 21 days under basal conditions. The micropatterned groups induced levels of osteogenic differentiation and expression of osteoblast-associated markers higher than those of the flat controls. Via comparison of the micropatterns, the pillars caused a stronger response of the osteogenic differentiation of hMSCs with a higher level of expression of osteoblast-associated markers, ALP activity, and extracellular matrix mineralization after the cells had been cultured for 21 days. These findings suggest that specific microtopographic cues can direct hMSCs toward osteogenic differentiation. 漏 2016 American Chemical [email protected]

    Effects of density of anisotropic microstamped silica thin films on guided bone tissue regeneration - In vitro study

    No full text
    The growing demand for better implant aesthetics has led to increased research on the development of all-ceramic dental implants. The use of microtextured coatings with enhanced properties has been presented as a viable way to improve tissue integrability of all-ceramic implants. The aim of this study was to evaluate the effects of different densities of anisotropic microtextured silica thin films, which served as a model coating, on the behavior of human osteoblast-like cells. The differential responses of human osteoblast-like cells to anisotropic silica microtextures with varying densities, produced via a combination of sol-gel and soft lithography processing, were evaluated in terms of alignment, elongation (using fluorescence microscopy), overall cellular activity, and the expression/activity levels of alkaline phosphatase (ALP). Statistical analysis was conducted using one-way ANOVA/Tukey HSD post hoc test. The thin films were thoroughly characterized via scanning electron microscopy/energy dispersive spectroscopy, Fourier transform infrared, and contact angle measurements. Thin film characterization revealed increased nanoscale roughness and reduced wettability on the micropatterned surfaces. Cell culture experiments indicated that the microtextures induced cell alignment, elongation, and guided colonization on the surface. Cells cultured on denser micropatterns exhibited increased metabolic activity (t = 14-21 days). The early expression/activity levels of ALP released into the medium were found to be significantly higher only on the least dense micropattern. These results suggest the possibility that microstructured silica thin films could be used to guide and enhance peri-implant cell/tissue responses, potentially improving tissue integration for metallic and all-ceramic dental implants. 漏 2013 Wiley Periodicals, [email protected]

    Effects of density of anisotropic microstamped silica thin films on guided bone tissue regeneration - In vitro study

    No full text
    The growing demand for better implant aesthetics has led to increased research on the development of all-ceramic dental implants. The use of microtextured coatings with enhanced properties has been presented as a viable way to improve tissue integrability of all-ceramic implants. The aim of this study was to evaluate the effects of different densities of anisotropic microtextured silica thin films, which served as a model coating, on the behavior of human osteoblast-like cells. The differential responses of human osteoblast-like cells to anisotropic silica microtextures with varying densities, produced via a combination of sol-gel and soft lithography processing, were evaluated in terms of alignment, elongation (using fluorescence microscopy), overall cellular activity, and the expression/activity levels of alkaline phosphatase (ALP). Statistical analysis was conducted using one-way ANOVA/Tukey HSD post hoc test. The thin films were thoroughly characterized via scanning electron microscopy/energy dispersive spectroscopy, Fourier transform infrared, and contact angle measurements. Thin film characterization revealed increased nanoscale roughness and reduced wettability on the micropatterned surfaces. Cell culture experiments indicated that the microtextures induced cell alignment, elongation, and guided colonization on the surface. Cells cultured on denser micropatterns exhibited increased metabolic activity (t = 14-21 days). The early expression/activity levels of ALP released into the medium were found to be significantly higher only on the least dense micropattern. These results suggest the possibility that microstructured silica thin films could be used to guide and enhance peri-implant cell/tissue responses, potentially improving tissue integration for metallic and all-ceramic dental implants. 漏 2013 Wiley Periodicals, [email protected]

    Micropatterned bioactive thin films for guided bone regeneration

    No full text
    Se ha demostrado que la modificaci贸n de la superficie de los biomateriales mejora la respuesta biol贸gica a los implantes dentales . La capacidad de crear una microtextura controlada en el implante mediante t茅cnicas de modificaci贸n de superficie aditiv

    Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration

    No full text
    Surface modification of biomaterials has been shown to improve the biological response to dental implants. The ability to create a controlled micro-texture on the implant via additive surface modification techniques with bioactive nanohydroxyapatite (nanoHA) may positively influence guided tissue regeneration. Objective: The main goal of this study was to produce micro-fabricated SiO 2 surfaces modified with nanohydroxyapatite particles and to characterize their influence on the biological response of Human Dental-Pulp Mesenchymal Stem Cells (hDP-MSCs) and Streptococcus mutans. Materials and methods: A combined methodology of sol-gel and soft-lithography was used to produce micropatterned SiO 2 thin films with different percentages of nanoHA micro-aggregates. The surfaces were characterized by SEM/EDS, FT-IR/ATR, AFM, XPS quantitative elemental percentage and contact angle measurements. Biological characterization was performed using hDP-MSCs cultures, while Streptococcus mutans was the selected microorganism to evaluate the bacterial adhesion on the thin films. Results: Micropatterned SiO 2 surfaces with 0%, 1% and 5% of nanoHA micro-aggregates were successfully produced using a combination of sol-gel and soft-lithography. These surfaces controlled the biological response, triggering alignment and oriented proliferation of hDP-MSCs and significant differences in the adhesion of S. mutans to the different surfaces. Significance: The micropatterned surfaces exhibited biocompatible behavior that induced an oriented adhesion and proliferation of hDP-MSCs while SiO 2 presented low bacterial adhesion. These results show that the combination of sol-gel with soft-lithography is a good approach to create micropatterned surfaces with bioactive nanoparticles for guided tissue regeneration. 漏 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights [email protected]

    Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration

    No full text
    Surface modification of biomaterials has been shown to improve the biological response to dental implants. The ability to create a controlled micro-texture on the implant via additive surface modification techniques with bioactive nanohydroxyapatite (nanoHA) may positively influence guided tissue regeneration. Objective: The main goal of this study was to produce micro-fabricated SiO 2 surfaces modified with nanohydroxyapatite particles and to characterize their influence on the biological response of Human Dental-Pulp Mesenchymal Stem Cells (hDP-MSCs) and Streptococcus mutans. Materials and methods: A combined methodology of sol-gel and soft-lithography was used to produce micropatterned SiO 2 thin films with different percentages of nanoHA micro-aggregates. The surfaces were characterized by SEM/EDS, FT-IR/ATR, AFM, XPS quantitative elemental percentage and contact angle measurements. Biological characterization was performed using hDP-MSCs cultures, while Streptococcus mutans was the selected microorganism to evaluate the bacterial adhesion on the thin films. Results: Micropatterned SiO 2 surfaces with 0%, 1% and 5% of nanoHA micro-aggregates were successfully produced using a combination of sol-gel and soft-lithography. These surfaces controlled the biological response, triggering alignment and oriented proliferation of hDP-MSCs and significant differences in the adhesion of S. mutans to the different surfaces. Significance: The micropatterned surfaces exhibited biocompatible behavior that induced an oriented adhesion and proliferation of hDP-MSCs while SiO 2 presented low bacterial adhesion. These results show that the combination of sol-gel with soft-lithography is a good approach to create micropatterned surfaces with bioactive nanoparticles for guided tissue regeneration. 漏 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights [email protected]

    A versatile cancer cell trapping and 1D migration assay in a microfluidic device

    No full text
    Highly migratory cancer cells often lead to metastasis and recurrence and are responsible for the high mortality rates in many cancers despite aggressive treatment. Recently, the migratory behavior of patient-derived glioblastoma multiforme cells on microtracks has shown potential in predicting the likelihood of recurrence, while at the same time, antimetastasis drugs have been developed which require simple yet relevant high-throughput screening systems. However, robust in vitro platforms which can reliably seed single cells and measure their migration while mimicking the physiological tumor microenvironment have not been demonstrated. In this study, we demonstrate a microfluidic device which hydrodynamically seeds single cancer cells onto stamped or femtosecond laser ablated polystyrene microtracks, promoting 1D migratory behavior due to the cells' tendency to follow topographical cues. Using time-lapse microscopy, we found that single U87 glioblastoma multiforme cells migrated more slowly on laser ablated microtracks compared to stamped microtracks of equal width and spacing (p < 0.05) and exhibited greater directional persistence on both 1D patterns compared to flat polystyrene (p < 0.05). Single-cell morphologies also differed significantly between flat and 1D patterns, with cells on 1D substrates exhibiting higher aspect ratios and less circularity (p < 0.05). This microfluidic platform could lead to automated quantification of single-cell migratory behavior due to the high predictability of hydrodynamic seeding and guided 1D migration, an important step to realizing the potential of microfluidic migration assays for drug screening and individualized medicine. Published under license by AIP Publishing
    corecore