3 research outputs found

    Uncertainty relations from graph theory

    Full text link
    Quantum measurements are inherently probabilistic and quantum theory often forbids to precisely predict the outcomes of simultaneous measurements. This phenomenon is captured and quantified through uncertainty relations. Although studied since the inception of quantum theory, the problem of determining the possible expectation values of a collection of quantum measurements remains, in general, unsolved. By constructing a close connection between observables and graph theory, we derive uncertainty relations valid for any set of dichotomic observables. These relations are, in many cases, tight, and related to the size of the maximum clique of the associated graph. As applications, our results can be straightforwardly used to formulate entropic uncertainty relations, separability criteria and entanglement witnesses.Comment: A counterexample to a conjecture was found by Xu et a

    Certifying the topology of quantum networks: theory and experiment

    Full text link
    Distributed quantum information in networks is paramount for global secure quantum communication. Moreover, it finds applications as a resource for relevant tasks, such as clock synchronization, magnetic field sensing, and blind quantum computation. For quantum network analysis and benchmarking of implementations, however, it is crucial to characterize the topology of networks in a way that reveals the nodes between which entanglement can be reliably distributed. Here, we demonstrate an efficient scheme for this topology certification. Our scheme allows for distinguishing, in a scalable manner, different networks consisting of bipartite and multipartite entanglement sources, for different levels of trust in the measurement devices and network nodes. We experimentally demonstrate our approach by certifying the topology of different six-qubit networks generated with polarized photons, employing active feed-forward and time multiplexing. Our methods can be used for general simultaneous tests of multiple hypotheses with few measurements, being useful for other certification scenarios in quantum technologies.Comment: 18 pages, 5 figure

    Symmetries in quantum networks lead to no-go theorems for entanglement distribution and to verification techniques

    No full text
    Finanziert im Rahmen der DEAL-Verträge durch die Universitätsbibliothek SiegenQuantum networks are promising tools for the implementation of long-range quantum communication. The characterization of quantum correlations in networks and their usefulness for information processing is therefore central for the progress of the field, but so far only results for small basic network structures or pure quantum states are known. Here we show that symmetries provide a versatile tool for the analysis of correlations in quantum networks. We provide an analytical approach to characterize correlations in large network structures with arbitrary topologies. As examples, we show that entangled quantum states with a bosonic or fermionic symmetry can not be generated in networks; moreover, cluster and graph states are not accessible. Our methods can be used to design certification methods for the functionality of specific links in a network and have implications for the design of future network structures
    corecore