38,953 research outputs found

    Comment on "Formation of primordial black holes by cosmic strings"

    Full text link
    We show that in a pioneering paper by Polnarev and Zembowicz, some conclusions concerning the characteristics of the Turok-strings are generally not correct. In addition we show that the probability of string collapse given there, is off by a large prefactor (~1000).Comment: 5 pages, LaTeX and 1 figure, postscript. To appear in PR

    What it takes to measure a fundamental difference between dark matter and baryons: the halo velocity anisotropy

    Full text link
    Numerous ongoing experiments aim at detecting WIMP dark matter particles from the galactic halo directly through WIMP-nucleon interactions. Once such a detection is established a confirmation of the galactic origin of the signal is needed. This requires a direction-sensitive detector. We show that such a detector can measure the velocity anisotropy beta of the galactic halo. Cosmological N-body simulations predict the dark matter anisotropy to be nonzero, beta~0.2. Baryonic matter has beta=0 and therefore a detection of a nonzero beta would be strong proof of the fundamental difference between dark and baryonic matter. We estimate the sensitivity for various detector configurations using Monte Carlo methods and we show that the strongest signal is found in the relatively few high recoil energy events. Measuring beta to the precision of ~0.03 will require detecting more than 10^4 WIMP events with nuclear recoil energies greater than 100 keV for a WIMP mass of 100 GeV and a 32S target. This number corresponds to ~10^6 events at all energies. We discuss variations with respect to input parameters and we show that our method is robust to the presence of backgrounds and discuss the possible improved sensitivity for an energy-sensitive detector.Comment: 15 pages, 8 figures, accepted by JCAP. Matches accepted versio

    Towards first-principles understanding of the metal-insulator transition in fluid alkali metals

    Full text link
    By treating the electron-ion interaction as perturbation in the first-principles Hamiltonian, we have calculated the density response functions of a fluid alkali metal to find an interesting charge instability due to anomalous electronic density fluctuations occurring at some finite wave vector {\bi Q} in a dilute fluid phase above the liquid-gas critical point. Since |{\bi Q}| is smaller than the diameter of the Fermi surface, this instability necessarily impedes the electric conduction, implying its close relevance to the metal-insulator transition in fluid alkali metals.Comment: 11 pages, 5 figure

    Practical dispersion relations for strongly coupled plasma fluids

    Get PDF
    Very simple explicit analytical expressions are discussed, which are able to describe the dispersion relations of longitudinal waves in strongly coupled plasma systems such as one-component plasma and weakly screened Yukawa fluids with a very good accuracy. Applications to other systems with soft pairwise interactions are briefly discussed.Comment: 11 pages, 3 figures; Related to arXiv:1711.0615

    Cosmic String Loops Collapsing to Black Holes

    Get PDF
    We reexamine the question of collapse of Turok's two-parameter family of cosmic strings. We first give a few simple explicit examples showing that previously obtained results in the literature cannot generally be correct in the complete two-dimensional parameter-space. We then perform a classification of the strings according to the specific time(s) the minimal string size is reached during one period. Finally we obtain an exact analytical expression for the probability of collapse to black holes for the Turok strings. Our result has the same general behavior as previously obtained in the literature but we find, in addition, a numerical prefactor that changes the result by approximately a factor 2000

    An oil pipeline design problem

    Get PDF
    Copyright @ 2003 INFORMSWe consider a given set of offshore platforms and onshore wells producing known (or estimated) amounts of oil to be connected to a port. Connections may take place directly between platforms, well sites, and the port, or may go through connection points at given locations. The configuration of the network and sizes of pipes used must be chosen to minimize construction costs. This problem is expressed as a mixed-integer program, and solved both heuristically by Tabu Search and Variable Neighborhood Search methods and exactly by a branch-and-bound method. Two new types of valid inequalities are introduced. Tests are made with data from the South Gabon oil field and randomly generated problems.The work of the first author was supported by NSERC grant #OGP205041. The work of the second author was supported by FCAR (Fonds pour la Formation des Chercheurs et l’Aide à la Recherche) grant #95-ER-1048, and NSERC grant #GP0105574

    Structure factor and thermodynamics of rigid dendrimers in solution

    Full text link
    The ''polymer reference interaction site model'' (PRISM) integral equation theory is used to determine the structure factor of rigid dendrimers in solution. The theory is quite successful in reproducing experimental structure factors for various dendrimer concentrations. In addition, the structure factor at vanishing scattering vector is calculated via the compressibility equation using scaled particle theory and fundamental measure theory. The results as predicted by both theories are systematically smaller than the experimental and PRISM data for platelike dendrimers.Comment: 7 pages, 5 figures, submitte

    Fracturing highly disordered materials

    Full text link
    We investigate the role of disorder on the fracturing process of heterogeneous materials by means of a two-dimensional fuse network model. Our results in the extreme disorder limit reveal that the backbone of the fracture at collapse, namely the subset of the largest fracture that effectively halts the global current, has a fractal dimension of 1.22±0.011.22 \pm 0.01. This exponent value is compatible with the universality class of several other physical models, including optimal paths under strong disorder, disordered polymers, watersheds and optimal path cracks on uncorrelated substrates, hulls of explosive percolation clusters, and strands of invasion percolation fronts. Moreover, we find that the fractal dimension of the largest fracture under extreme disorder, df=1.86±0.01d_f=1.86 \pm 0.01, is outside the statistical error bar of standard percolation. This discrepancy is due to the appearance of trapped regions or cavities of all sizes that remain intact till the entire collapse of the fuse network, but are always accessible in the case of standard percolation. Finally, we quantify the role of disorder on the structure of the largest cluster, as well as on the backbone of the fracture, in terms of a distinctive transition from weak to strong disorder characterized by a new crossover exponent.Comment: 5 pages, 4 figure
    • 

    corecore