2,114 research outputs found

    Reliability and Physiological Interpretation of Pulmonary Gas Exchange by "Circulatory Equivalents" in Chronic Heart Failure

    Get PDF
    Peak ratios of pulmonary gas-exchange to ventilation during exercise (V˙O2/V˙E and V˙CO2/V˙E, termed "circulatory equivalents") are sensitive to heart failure (HF) severity, likely reflecting low and/or poorly distributed pulmonary perfusion. We tested whether peak V˙O2/V˙E and V˙CO2/V˙E would: (1) distinguish HF patients from controls; (2) be independent of incremental exercise protocol; and (3) correlate with lactate threshold (LT) and ventilatory compensation point (VCP), respectively.Twenty-four HF patients (61±11 years) with reduced ejection fraction (31±8%) and 11 controls (63±7 years) performed ramp-incremental cycle ergometry. Eighteen HF patients also performed slow (5±1 W/min), medium (9±4 W/min), and fast (19±6 W/min) ramps. Peak V˙O2/V˙E and V˙CO2/V˙E from X-Y plot, and LT and VCP from 9-panel plot, were determined by 2 independent, blinded, assessors. Peak V˙O2/V˙E (31.2±4.4 versus 41.8±4.8 mL/L; P<0.0001) and V˙CO2/V˙E (29.3±3.0 versus 36.9±4.0 mL/L; P<0.0001) were lower in HF than controls. Within individuals, there was no difference across 3 ramp rates in peak V˙O2/V˙E (P=0.62) or V˙CO2/V˙E (P=0.97). Coefficient of variation (CV) in peak V˙O2/V˙E was lower than for LT (5.1±2.1% versus 8.2±3.7%; P=0.014), and coefficient of variation in peak V˙CO2/V˙E was lower than for VCP (3.3±1.8% versus 8.7±4.2%; P<0.001). In all participants, peak V˙O2/V˙E was correlated with, but occurred earlier than, LT (r2=0.94; mean bias, -0.11 L/min), and peak V˙CO2/V˙E was correlated with, but occurred earlier than, VCP (r2=0.98; mean bias -0.08 L/min).Peak circulatory equivalents during exercise are strongly associated with (but not identical to) LT and VCP. Peak circulatory equivalents are reliable, objective, effort-independent indices of gas-exchange abnormality in HF

    Geodesics in a quasispherical spacetime: A case of gravitational repulsion

    Full text link
    Geodesics are studied in one of the Weyl metrics, referred to as the M--Q solution. First, arguments are provided, supporting our belief that this space--time is the more suitable (among the known solutions of the Weyl family) for discussing the properties of strong quasi--spherical gravitational fields. Then, the behaviour of geodesics is compared with the spherically symmetric situation, bringing out the sensitivity of the trajectories to deviations from spherical symmetry. Particular attention deserves the change of sign in proper radial acceleration of test particles moving radially along symmetry axis, close to the r=2Mr=2M surface, and related to the quadrupole moment of the source.Comment: 30 pages late

    Elevated expression of c-kit in small venous malformations of blue rubber bleb nevus syndrome

    Get PDF
    The blue rubber bleb nevus syndrome (BRBNS, syn. bean syndrome) is a rare disease characterized by multiple cutaneous and gastrointestinal venous malformations associated with severe bleeding. However, the underlying molecular mechanisms are unknown and no targeted therapeutic approach exists to date. Here we report the case of a 19-year-old male patient with severe BRBNS in whom we analyzed the expression of tyrosine kinases frequently involved in tumor development by immunohistochemistry (vascular endothelial growth factor receptor-2, stem cell growth factor receptor (c-kit), platelet-derived growth factor receptor-β, and stem cell tyrosine kinase-1). A prominent expression of c-kit was detectable in smaller blood vessels, which also showed a moderate expression of the proliferation marker MIB1. Surprisingly, other growth factor receptors stained negatively. We therefore conclude that pharmacological inhibition of the c-kit signaling pathway in cavernous hemangiomas by selective kinase inhibitors may offer options in the treatment of BRBNS patients

    Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters

    Full text link
    We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation).Comment: 6 pages, 4 figure

    Identification of a Danish breast/ovarian cancer family double heterozygote for BRCA1 and BRCA2 mutations

    Get PDF
    Mutations in the two breast cancer susceptibility genes BRCA1 and BRCA2 are associated with increased risk of breast and ovarian cancer. Patients with mutations in both genes are rarely reported and often involve Ashkenazi founder mutations. Here we report the first identification of a Danish breast and ovarian cancer family heterozygote for mutations in the BRCA1 and BRCA2 genes. The BRCA1 nucleotide 5215G > A/c.5096G > A mutation results in the missense mutation Arg1699Gln, while the BRCA2 nucleotide 859 + 4A > G/c.631 + 4A > G is novel. Exon trapping experiments and reverse transcriptase (RT)–PCR analysis revealed that the BRCA2 mutation results in skipping of exon 7, thereby introducing a frameshift and a premature stop codon. We therefore classify the mutation as disease causing. Since the BRCA1 Arg1699Gln mutation is also suggested to be disease-causing, we consider this family double heterozygote for BRCA1 and BRCA2 mutations

    Cosmology of a Scalar Field Coupled to Matter and an Isotropy-Violating Maxwell Field

    Full text link
    Motivated by the couplings of the dilaton in four-dimensional effective actions, we investigate the cosmological consequences of a scalar field coupled both to matter and a Maxwell-type vector field. The vector field has a background isotropy-violating component. New anisotropic scaling solutions which can be responsible for the matter and dark energy dominated epochs are identified and explored. For a large parameter region the universe expands almost isotropically. Using that the CMB quadrupole is extremely sensitive to shear, we constrain the ratio of the matter coupling to the vector coupling to be less than 10^(-5). Moreover, we identify a large parameter region, corresponding to a strong vector coupling regime, yielding exciting and viable cosmologies close to the LCDM limit.Comment: Refs. added, some clarifications. Published in JHEP10(2012)06

    Evolutionary and pulsational properties of white dwarf stars

    Full text link
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    Radiative Transfer for Exoplanet Atmospheres

    Full text link
    Remote sensing of the atmospheres of distant worlds motivates a firm understanding of radiative transfer. In this review, we provide a pedagogical cookbook that describes the principal ingredients needed to perform a radiative transfer calculation and predict the spectrum of an exoplanet atmosphere, including solving the radiative transfer equation, calculating opacities (and chemistry), iterating for radiative equilibrium (or not), and adapting the output of the calculations to the astronomical observations. A review of the state of the art is performed, focusing on selected milestone papers. Outstanding issues, including the need to understand aerosols or clouds and elucidating the assumptions and caveats behind inversion methods, are discussed. A checklist is provided to assist referees/reviewers in their scrutiny of works involving radiative transfer. A table summarizing the methodology employed by past studies is provided.Comment: 7 pages, no figures, 1 table. Filled in missing information in references, main text unchange

    Factors influencing the opinion of individuals in determining tumour spread after biopsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>People often have concerns regarding tumour spread after biopsy which leads to a delay in seeking expert medical advice. The data regarding this perception is scanty. Therefore, we conducted this cross sectional study to explore the beliefs and perceptions of individuals regarding tumour spread after biopsy and the basis of those beliefs.</p> <p>Methods</p> <p>The survey was conducted in outpatient areas of two different tertiary care hospitals of Karachi namely Aga Khan University Hospital Karachi (AKUH) and Karachi Institute of Radiotherapy and Nuclear Medicine (KIRAN). We interviewed 600 individuals and documented their responses on a questionnaire. There were 400 responders from Aga Khan's Consulting Clinic and 100 each from Aga Khan's Oncology Clinic and KIRAN.</p> <p>Results</p> <p>Only 50% of the respondents chose biopsy as the best test for diagnosis of cancer. The level of education was statistically significant in making this choice of answer (<it>p </it>= 0.02) only in univariate analysis. Those individuals who were involved in the work up of cancer patients irrespective of their educational status gave more intelligent answers (<it>p </it>= 0.003). The tumour disturbance after biopsy was regarded as a major factor among 127 respondents (53%) who believed that biopsy could lead to spread of tumour.</p> <p>Conclusions</p> <p>Our study revealed that awareness regarding cancer diagnosis and biopsy is lacking among general public and it does not co-relate well with the level of formal education. These misconception and taboos need to be addressed in public seminars and in the media in order to increase the awareness which could facilitate prompt diagnosis.</p
    corecore