50,920 research outputs found
Alternative method to find orbits in chaotic systems
We present here a new method which applies well ordered symbolic dynamics to
find unstable periodic and non-periodic orbits in a chaotic system. The method
is simple and efficient and has been successfully applied to a number of
different systems such as the H\'enon map, disk billiards, stadium billiard,
wedge billiard, diamagnetic Kepler problem, colinear Helium atom and systems
with attracting potentials. The method seems to be better than earlier applied
methods.Comment: 5 pages, uuencoded compressed tar PostScript fil
Antigen-specific electrophoretic cell separation for immunological investigations
Preincubation of human blood lymphocytes with cell surface antigen specific antibodies under non-capping conditions reduces the electrophoretic mobility of the corresponding lymphocyte subpopulation. Antigen-positive and antigen-negative cells can be separated by free flow electrophoresis with high yield, purity and viability. The use of fluorescence-labelled second antibodies augments the induced decrease in net surface charge density, and allows rapid detection of antigen-positive cells in the fractions of electrophoresis. Carrier-free cell electrophoresis of human peripheral blood lymphocytes after reaction with anti-IgM-antibody or the monoclonal antibodies OKT4 or OKT8, and sandwich staining with tetrarhodamine isothiocyanate-labelled anti-IgG resulted in the large-scale separation of high pure human B and T lymphocyte subpopulations. Their functional integrity was shown in assays of lymphocyte transformation and of antigen-specific induction and regulation of antibody synthesis in vitro. These separate lymphocyte subpopulations are useful tools for immunological investigations. While, for instance, the effects of drugs on human lymphocytes are obscured by coincident changes in cell composition of the peripheral blood tested that do not by themselves reflect whole body immunocompetence, the cell separation and in vitro assays at a defined cell number and cell composition allow the recording of quantitative changes in the function of different cell subpopulations. We studied the influence of the anesthetic thiopental on separated human lymphocyte subsets. In both polyclonal lectin stimulation and in vitro antibody production, thiopental exhibited a noncytotoxic suppression of lymphocyte functions. B-Cells, T-helper and T-suppressor cells were equally affected and showed the same dose response.(ABSTRACT TRUNCATED AT 250 WORDS
Phase diagram of the vortex system in layered superconductors with strong columnar pinning
We present the results of a detailed investigation of the low-temperature
properties of the vortex system in strongly anisotropic layered superconductors
with a random array of columnar pinning centers. Our method involves numerical
minimization of a free energy functional in terms of the time-averaged local
vortex density. It yields the detailed vortex density distribution for all
local free-energy minima, and therefore allows the computation of any desired
correlation function of the time-averaged local vortex density. Results for the
phase diagram in the temperature vs. pin concentration plane at constant
magnetic induction are presented. We confirm that for very low pin
concentrations, the low-temperature phase is a Bragg glass, which melts into an
interstitial liquid phase via two first-order steps, separated by a Bose glass
phase. At higher concentrations, however, the low-temperature phase is a Bose
glass, and the melting transition becomes continuous. The transition is then
characterized by the onset of percolation of liquid-like regions across the
sample. Inhomogeneous local melting of the Bose glass is found to occur. There
is also a depinning crossover between the interstitial liquid and a completely
unpinned liquid at higher temperatures. At sufficiently large pin
concentrations, the depinning line merges with the Bose glass to interstitial
liquid transition. Many of the features we find have been observed
experimentally and in simulations. We discuss the implications of our results
for future experimental and theoretical work.Comment: 15 pages including Figure
The phase diagram of vortex matter in layered superconductors with tilted columnar pinning centers
We study the vortex matter phase diagram of a layered superconductor in the
presence of columnar pinning defects, {\it tilted} with respect to the normal
to the layers. We use numerical minimization of the free energy written as a
functional of the time averaged vortex density of the Ramakrishnan-Yussouff
form, supplemented by the appropriate pinning potential. We study the case
where the pin density is smaller than the areal vortex density. At lower pin
concentrations, we find, for temperatures of the order of the melting
temperature of the unpinned lattice, a Bose glass type phase which at lower
temperatures converts, via a first order transition, to a Bragg glass, while,
at higher temperatures, it crosses over to an interstitial liquid. At somewhat
higher concentrations, no transition to a Bragg glass is found even at the
lowest temperatures studied. While qualitatively the behavior we find is
similar to that obtained using the same procedures for columnar pins normal to
the layers, there are important and observable quantitative differences, which
we discuss.Comment: 12 pages, including figure
Bifurcations and Complete Chaos for the Diamagnetic Kepler Problem
We describe the structure of bifurcations in the unbounded classical
Diamagnetic Kepler problem. We conjecture that this system does not have any
stable orbits and that the non-wandering set is described by a complete trinary
symbolic dynamics for scaled energies larger then .Comment: 15 pages PostScript uuencoded with figure
Numerical Modeling of Pulse Wave Propagation in a Stenosed Artery using Two-Way Coupled Fluid Structure Interaction (FSI)
As the heart beats, it creates fluctuation in blood pressure leading to a
pulse wave that propagates by displacing the arterial wall. These waves travel
through the arterial tree and carry information about the medium that they
propagate through as well as information of the geometry of the arterial tree.
Pulse wave velocity (PWV) can be used as a non-invasive diagnostic tool to
study the functioning of cardiovascular system. A stenosis in an artery can
dampen the pulse wave leading to changes in the propagating pulse. Hence, PWV
analysis can be performed to detect a stenosed region in arteries. This paper
presents a numerical study of pulse wave propagation in a stenosed artery by
means of two-way coupled fluid structure interaction (FSI). The computational
model was validated by the comparison of the simulated PWV results with
theoretical values for a healthy artery. Propagation of the pulse waves in the
stenosed artery was compared with healthy case using spatiotemporal maps of
wall displacements. The analysis for PWV showed significance differences
between the healthy and stenosed arteries including damping of propagating
waves and generation of high wall displacements downstream the stenosis caused
by flow instabilities. This approach can be used to develop patient-specific
models that are capable of predicting PWV signatures associated with stenosis
changes. The knowledge gained from these models may increase utility of this
approach for managing patients at risk of stenosis occurrence
Eighth-order phase-field-crystal model for two-dimensional crystallization
We present a derivation of the recently proposed eighth order phase field
crystal model [Jaatinen et al., Phys. Rev. E 80, 031602 (2009)] for the
crystallization of a solid from an undercooled melt. The model is used to study
the planar growth of a two dimensional hexagonal crystal, and the results are
compared against similar results from dynamical density functional theory of
Marconi and Tarazona, as well as other phase field crystal models. We find that
among the phase field crystal models studied, the eighth order fitting scheme
gives results in good agreement with the density functional theory for both
static and dynamic properties, suggesting it is an accurate and computationally
efficient approximation to the density functional theory
An exact formalism to study the thermodynamic properties of hard-sphere systems under spherical confinement
This paper presents a modified grand canonical ensemble which provides a new
simple and efficient scheme to study few-body fluid-like inhomogeneous systems
under confinement. The new formalism is implemented to investigate the exact
thermodynamic properties of a hard sphere (HS) fluid-like system with up to
three particles confined in a spherical cavity. In addition, the partition
function of this system was used to analyze the surface thermodynamic
properties of the many-HS system and to derive the exact curvature dependence
of both the surface tension and adsorption in powers of the density. The
expressions for the surface tension and the adsorption were also obtained for
the many- HS system outside of a fixed hard spherical object. We used these
results to derive the dependence of the fluid-substrate Tolman length up to
first order in density.Comment: 6 figures. The paper includes new exact results about hard spheres
fluid-like system
- …