6 research outputs found

    The relationship between physical fitness and clustered risk, and tracking of clustered risk from adolescence to young adulthood: eight years follow-up in the Danish Youth and Sport Study

    Get PDF
    INTRODUCTION: Cardiovascular disease (CVD) is usually caused by high levels of many risk factors simultaneously over many years. Therefore, it is of great interest to study if subjects stay within rank order over time in both the biological risk factors and the behaviour that influences these risk factors. Many studies have described stability (tracking) in single risk factors, especially in children where hard endpoints are lacking, but few have analysed tracking in clustered risk. METHODS: Two examinations were conducted 8 years apart. The first time, 133 males and 172 females were 16–19 years of age. Eight years later, 98 males and 137 females participated. They were each time ranked into quartiles by sex in four CVD risk factors all related to the metabolic syndrome. Risk factors were the ratio between total cholesterol and HDL, triglyceride, systolic BP and body fat. The upper quartile was defined as being at risk, and if a subject had two or more risk factors, he/she was defined as a case (15–20 % of the subjects). Odds ratios (OR) for being a case was calculated between quartiles of fitness in both cross-sectional studies. The stability of combined risk was calculated as the OR between cases and non-cases at the first examination to be a case at the second examination. RESULTS: ORs for having two or more risk factors between quartiles of fitness were 3.1, 3.8 and 4.9 for quartiles two to four, respectively. At the second examination, OR were 0.7, 3.5 and 4.9, respectively. The probability for "a case" at the first examination to be "a case" at the second was 6.0. CONCLUSIONS: The relationship between an exposure like physical fitness and CVD risk factors is much stronger when clustering of risk factors are analysed compared to the relationship to single risk factors. The stability over time in multiple risk factors analysed together is strong. This relationship should be seen in the light of moderate or weak tracking of single risk factors, and is strong evidence for early intervention in children where risk factors cluster

    A 3-year physical activity intervention program increases the gain in bone mineral and bone width in prepubertal girls but not boys: the Prospective Copenhagen School Child Interventions Study (CoSCIS)

    No full text
    The aim of this study was to evaluate the effect of increasing the amount of time spent in physical education classes on bone mineral accrual and gain in bone size in prepubertal Danish children. A total of 135 boys and 108 girls, aged 6–8 years, were included in a school-based curriculum intervention program where the usual time spent in physical education classes was doubled to four classes (180 min) per week. The control group comprised age-matched children (62 boys and 76 girls) recruited from a separate community who completed the usual Danish school curriculum of physical activity (90 min/week). Dual-energy X-ray absorptiometry was used to evaluate bone mineral content (BMC; g), bone mineral density (g/cm2), and bone width at the calcaneus and distal forearm before and after 3 years of intervention. Anthropometrics and Tanner stages were evaluated on the same occasions. General physical activity was measured with an accelerometer worn for 4 days. In girls, the intervention group had a 12.5% increase (P = 0.04) in distal forearm BMC and a 13.2% increase (P = 0.005) in distal forearm scanned area compared with girls in the control group. No differences were found between the intervention and control groups in boys. Increasing the frequency of physical education classes for prepubertal children is associated with a higher accrual of bone mineral and higher gain in bone size after 3 years in girls but not in boys
    corecore