286 research outputs found

    The herbal extract EPs® 7630 increases the antimicrobial airway defense through monocyte-dependent induction of IL-22 in T cells

    Get PDF
    The phytotherapeutic compound EPs® 7630, an extract manufactured from Pelargonium sidoides roots, is frequently used for the treatment of airway infections. Nevertheless, the knowledge of the mode of action of EPs® 7630 is still sparse. Our study aimed at further elucidating the underlying pharmacological mechanisms by focusing on antimicrobial defense mechanisms of EPs® 7630. While investigating the influence of EPs® 7630 on lymphokine production by PBMCs, we found that EPs® 7630 is a novel inducer of IL-22 and IL-17. This cytokine-inducing effect was most pronounced for IL-22 and clearly dose-dependent starting from 1 μg/ml of the extract. Furthermore, EPs® 7630 pretreatment selectively enhanced the IL-22 and IL-17 production capacity of CD3/28-activated PBMCs while strongly limiting the IFN-γ production capacity of innate lymphoid cells. The relevance of EPs® 7630-induced IL-22 production was proven in vitro and in vivo, where IL-22 provoked a strong increase of the antimicrobial protein S100A9 in lung epithelial cells and pulmonary tissue, respectively. A detailed analysis of IL-22 induction modi revealed no direct influence of EPs® 7630 on the basal or anti-CD3/CD28 antibody-induced IL-22 production by CD4+ memory T cells. In fact, EPs® 7630-induced IL-22 production by CD4+ memory T cells was found to be essentially dependent on soluble mediators (IL-1/IL-23) as well as on direct cellular contact with monocytes. In summary, our study reveals a new immune-modulating function of EPs® 7630 that might confer IL-22 and IL-17-induced protection from bacterial airway infection. KEY MESSAGES: EPs® 7630 selectively strengthens IL-22 and IL-17 production of memory T cells. EPs® 7630 limits the IFN-y production capacity of innate lymphoid cells. EPs® 7630-caused IL-22 production by T cells is essentially dependent on monocytes. IL-22 increase antimicrobial proteins (AMPs) in airway epithelium. EPs® 7630 might protect against airway infection by induction of AMP-inducers

    Regulatory T cell-mediated anti-inflammatory effects promote successful tissue repair in both indirect and direct manners

    Get PDF
    Regulatory T cells (Tregs) offer new immunotherapeutic options to control undesired immune reactions, such as those in transplant rejection and autoimmunity. In addition, tissue repair and regeneration depend on a multitude of tightly regulated immune and non-immune cells and signaling molecules. There is mounting evidence that adequate innate responses, and even more importantly balanced adaptive immune responses, are key players in the tissue repair and regeneration processes, even in absence of any immune- related disease or infection. Thus, the anti-inflammatory and anti-apoptotic capacities of Treg can affect not only the effector immune response, creating the appropriate immune environment for successful tissue repair and regeneration, but growing evidence shows that they also have direct effects on tissue cell functions. Here we summarize the present views on how Treg might support tissue regeneration by direct control of undesired immune reactivity and also by direct interaction with non-immune tissue cells. We describe tissue-resident Treg and their specific phenotypes in skin, visceral adipose tissue, and skeletal muscle. In addition, we touch on the topic of osteoimmunology, discussing the direct interactions of Treg with bone-forming cells, such as osteoblasts and their mesenchymal stromal cell (MSC) progenitors—a field which is under-investigated. We hypothesize a cross-talk between Treg and bone-forming cells through the CD39–CD73-(adenosine)-adenosine receptor pathway, which might also potentiate the differentiation of MSCs, thus facilitating bone regeneration. This hypothesis may provide a road map for further investigations on the cross-talk between the immune and the skeletal system, and also enable the development of better strategies to promote bone repair and regeneration

    Circulating endothelial cells as biomarker for cardiovascular diseases

    Get PDF
    Background: Endothelial dysfunction is involved in several cardiovascular diseases. Elevated levels of circulating endothelial cells (CECs) and low levels of endothelial progenitor cells (EPCs) have been described in different cardiovascular conditions, suggesting their potential use as diagnostic biomarkers for endothelial dysfunction. Compared to typical peripheral blood leukocyte subsets, CECs and EPCs occur at very low frequency. The reliable identification and characterization of CECs and EPCs is a prerequisite for their clinical use, however, a validated method to this purpose is still missing but a key for rare cell events. Objectives: To establish a validated flow cytometric procedure in order to quantify CECs and EPCs in human whole blood. Methods: In the establishment phase, the assay sensitivity, robustness, and the sample storage conditions were optimized as prerequisite for clinical use. In a second phase, CECs and EPCs were analyzed in heart failure with preserved (HFpEF) and reduced (HFrEF) ejection fraction, in arterial hypertension (aHT), and in diabetic nephropathy (DN) in comparison to age-matched healthy controls. Results: The quantification procedure for CECs and EPCs showed high sensitivity and reproducibility. CEC values resulted significantly increased in patients with DN and HFpEF in comparison to healthy controls. CEC quantification showed a diagnostic sensitivity of 90% and a sensitivity of 68.0%, 70.4%, and 66.7% for DN, HFpEF, and aHT, respectively. Conclusion: A robust and precise assay to quantify CECs and EPCs in pre-clinical and clinical studies has been established. CEC counts resulted to be a good diagnostic biomarker for DN and HFpEF

    The Role of Immune Reactivity in Bone Regeneration

    Get PDF
    Bone is a complex organ with the capacity to regenerate. Even with this healing potential, healing results in fractured bone are unsatisfactory in a considerable patient cohort even with a good treatment regimen. These delayed healing cases encourage further research into possible new treatment approaches. The recently developed field of osteoimmunology addressing the tight interconnectivity of the skeletal system and the immune system could be a promising opportunity in this regard. In this review, the complexity of bone and the bone healing process are highlighted with an emphasis on the early healing phase. Specific immune cell subsets are considered for their potential to enhance bone healing and thus to develop new treatment strategies for patients in need

    The Value of a Rapid Test of Human Regulatory T Cell Function Needs to be Revised

    Get PDF
    CD4(+)CD25(+)FoxP3(+) human regulatory T-CELLS (T-REG) are promising candidates for reshaping undesired immunity/inflammation by adoptive cell transfer, yet their application is strongly dependent on robust assays testing their functionality. Several studies along with first clinical data indicate T-REG to be auspicious to use for future cell therapies, e.g., to induce tolerance after solid organ transplantation. To this end, T-REG suppressive capacity has to be thoroughly evaluated prior to any therapeutic application. A 7 h-protocol for the assessment of T-REG function by suppression of the early activation markers CD154 and CD69 on CD4(+)CD25(-) responder T-CELLS (T-RESP) upon polyclonal stimulation via alpha CD3/28-coated activating microbeads has previously been published. Even though this assay has since been applied by various groups, the protocol comes with a critical pitfall, which is yet not corrected by the journal of its original publication. Our results demonstrate that the observed decrease in activation marker frequency on T-RESP is due to competition for alpha CD3/28-coated microbeads as opposed to a T-REG-attributable effect and therefore the protocol cannot further be used as a diagnostic test to assess suppressive TREG function

    Immunomodulation by Interleukin-10 Therapy Decreases the Incidence of Relapse and Prolongs the Relapse-free Interval in Psoriasis

    Get PDF
    The ability of interleukin-10 therapy to reduce the severity of exacerbated psoriasis has been demonstrated recently. Considering the immunobiologic properties of this cytokine we investigated the effects of long-term interleukin-10 application on the immune system and duration of psoriasis remission. We performed a placebo-controlled, double-blind, phase II trial using interleukin-10 in patients with chronic plaque psoriasis in remission. Patients received subcutaneous injections with either interleukin-10 (10 µg per kg body weight; n = 7) or placebo (n = 10) three times per week until relapse or study termination after 4 months. The treatment was well tolerated. In the placebo group almost all patients (90%) showed a relapse during the observation period. In contrast to this, only two of seven patients (28.6%) relapsed in the interleukin-10-treated group. Kaplan–Meier analysis revealed a significantly lower relapse incidence in the interleukin-10 than in the placebo group (p = 0.02). The mean relapse-free interval time was 101.6 ± 12.6 d in the interleukin-10 group in comparison with 66.4 ± 10.4 d in the placebo group. Immunologic activity of interleukin-10 application was indicated by an increase in soluble interleukin-2 receptor plasma levels and higher ex vivo interleukin-4 secretion capacities. Remarkably, a significant negative correlation was demonstrated between the interleukin-4 secretion capacity and Psoriasis Area and Severity Index score (r = -0.36, p < 0.01). Our data suggest that interleukin-10 therapy is immunologic effective, decreases the incidence of relapse and prolongs the disease-free interval in psoriasis. Its value should be further determined in larger trials and for the prevention of re-exacerbation of other inflammatory disorders with a similar immunologic profile

    The Value of a Rapid Test of Human Regulatory T Cell Function Needs to be Revised

    Get PDF
    CD4+CD25+FoxP3+ human regulatory TCELLS (TREG) are promising candidates for reshaping undesired immunity/inflammation by adoptive cell transfer, yet their application is strongly dependent on robust assays testing their functionality. Several studies along with first clinical data indicate TREG to be auspicious to use for future cell therapies, e.g., to induce tolerance after solid organ transplantation. To this end, TREG suppressive capacity has to be thoroughly evaluated prior to any therapeutic application. A 7 h-protocol for the assessment of TREG function by suppression of the early activation markers CD154 and CD69 on CD4+CD25− responder TCELLS (TRESP) upon polyclonal stimulation via αCD3/28-coated activating microbeads has previously been published. Even though this assay has since been applied by various groups, the protocol comes with a critical pitfall, which is yet not corrected by the journal of its original publication. Our results demonstrate that the observed decrease in activation marker frequency on TRESP is due to competition for αCD3/28-coated microbeads as opposed to a TREG-attributable effect and therefore the protocol cannot further be used as a diagnostic test to assess suppressive TREG function
    • …
    corecore