2 research outputs found

    Improved modelling of SEP event onset within the WSA–Enlil–SEPMOD framework

    No full text
    Multi-spacecraft observations of solar energetic particle (SEP) events not only enable a deeper understanding and development of particle acceleration and transport theories but also provide important constraints for model validation efforts. However, because of computational limitations, a given physics-based SEP model is usually best suited to capture a particular phase of an SEP event, rather than its whole development from onset through decay. For example, magnetohydrodynamic (MHD) models of the heliosphere often incorporate solar transients only at the outer boundary of their so-called coronal domain – usually set at a heliocentric distance of 20–30 R⊙. This means that particle acceleration at coronal mass ejection (CME)-driven shocks is also computed from this boundary onwards, leading to simulated SEP event onsets that can be many hours later than observed, since shock waves can form much lower in the solar corona. In this work, we aim to improve the modelled onset of SEP events by inserting a “fixed source” of particle injection at the outer boundary of the coronal domain of the coupled WSA–Enlil 3D MHD model of the heliosphere. The SEP model that we employ for this effort is Solar Energetic Particle MODel (SEPMOD), a physics-based test-particle code based on a field line tracer and adiabatic invariant conservation. We apply our initial tests and results of SEPMOD’s fixed-source option to the 2021 October 9 SEP event, which was detected at five well-separated locations in the inner heliosphere – Parker Solar Probe, STEREO-A, Solar Orbiter, BepiColombo, and near-Earth spacecraft

    Observation and Modeling of the Solar Wind Turbulence Evolution in the Sub-Mercury Inner Heliosphere

    No full text
    This letter exploits the radial alignment between the Parker Solar Probe and BepiColombo in late 2022 February, when both spacecraft were within Mercury’s orbit. This allows the study of the turbulent evolution, namely, the change in spectral and intermittency properties, of the same plasma parcel during its expansion from 0.11 to 0.33 au, a still unexplored region. The observational analysis of the solar wind turbulent features at the two different evolution stages is complemented by a theoretical description based on the turbulence transport model equations for nearly incompressible magnetohydrodynamics. The results provide strong evidence that the solar wind turbulence already undergoes significant evolution at distances less than 0.3 au from the Sun, which can be satisfactorily explained as due to evolving slab fluctuations. This work represents a step forward in understanding the processes that control the transition from weak to strong turbulence in the solar wind and in properly modeling the heliosphere.</p
    corecore