25 research outputs found

    A proinflammatory role for Fas in joints of mice with collagen-induced arthritis

    Get PDF
    Collagen-induced arthritis (CIA) is a chronic inflammatory disease bearing all the hallmarks of rheumatoid arthritis, e.g. polyarthritis, synovitis, and subsequent cartilage/bone erosions. One feature of the disease contributing to joint damage is synovial hyperplasia. The factors responsible for the hyperplasia are unknown; however, an imbalance between rates of cell proliferation and cell death (apoptosis) has been suggested. To evaluate the role of a major pathway of cell death – Fas (CD95)/FasL – in the pathogenesis of CIA, DBA/1J mice with a mutation of the Fas gene (lpr) were generated. The susceptibility of the mutant DBA-lpr/lpr mice to arthritis induced by collagen type II was evaluated. Contrary to expectations, the DBA-lpr/lpr mice developed significantly milder disease than the control littermates. The incidence of disease was also significantly lower in the lpr/lpr mice than in the controls (40% versus 81%; P < 0.05). However DBA-lpr/lpr mice mounted a robust immune response to collagen, and the expression of local proinflammatory cytokines such as, e.g., tumor necrosis factor α (TNF-α) and IL-6 were increased at the onset of disease. Since the contribution of synovial fibroblasts to inflammation and joint destruction is crucial, the potential activating effect of Fas on mouse fibroblast cell line NIH3T3 was investigated. On treatment with anti-Fas in vitro, the cell death of NIH3T3 fibroblasts was reduced and the expression of proinflammatory cytokines TNF-α and IL-6 was increased. These findings suggest that impairment of immune tolerance by increased T-cell reactivity does not lead to enhanced susceptibility to CIA and point to a role of Fas in joint destruction

    Perforin deficiency attenuates collagen-induced arthritis

    Get PDF
    Collagen-induced arthritis (CIA), an approved animal model for rheumatoid arthritis, is thought to be a T cell-dependent disease. There is evidence that CD8(+ )T cells are a major subset controlling the pathogenesis of CIA. They probably contribute to certain features of disease, namely tissue destruction and synovial hyperplasia. In this study we examined the role of perforin (pfp), a key molecule of the cytotoxic death pathway that is expressed mainly in CD8(+ )T cells, for the pathogenesis of CIA. We generated DBA/1J mice suffering from mutations of the pfp molecule, DBA/1J-pfp(-/-), and studied their susceptibility to arthritis. As a result, pfp-deficient mice showed a reduced incidence (DBA/1J-pfp(+/+), 64%; DBA/1J-pfp(-/-), 54%), a slightly delayed onset (onset of disease: DBA/1J-pfp(+/+), 53 ± 3.6; DBA/1J-pfp(-/-), 59 ± 4.9 (mean ± SEM), and milder form of the disease (maximum disease score: DBA/1J-pfp(+/+), 7.3 ± 1.1; DBA/1J-pfp(-/-), 3.4 ± 1.4 (mean ± SEM); P < 0.05). Concomitantly, peripheral T cell proliferation in response to the specific antigen bovine collagen II was increased in pfp(-/- )mice compared with pfp(+/+ )mice, arguing for an impaired killing of autoreactive T cells caused by pfp deficiency. Thus, pfp-mediated cytotoxicity is involved in the initiation of tissue damage in arthritis, but pfp-independent cytotoxic death pathways might also contribute to CIA

    Ultrasound imaging in pediatric regional anesthesia

    Full text link

    SchussenAktivplus: reduction of micropollutants and of potentially pathogenic bacteria for further water quality improvement of the river Schussen, a tributary of Lake Constance, Germany

    Get PDF
    The project focuses on the efficiency of combined technologies to reduce the release of micropollutants and bacteria into surface waters via sewage treatment plants of different size and via stormwater overflow basins of different types. As a model river in a highly populated catchment area, the river Schussen and, as a control, the river Argen, two tributaries of Lake Constance, Southern Germany, are under investigation in this project. The efficiency of the different cleaning technologies is monitored by a wide range of exposure and effect analyses including chemical and microbiological techniques as well as effect studies ranging from molecules to communities

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Membrane Distillation for the Production of Pharmaceutical-Grade Water—Investigation into the Application of AGMD and VMD

    No full text
    The production of pharmaceutical ingredients, intermediates and final products strongly depends on the utilization of water. Water is also required for the purification and preparation of reagents. Each specific application determines the respective water quality. In the European Union, the European Pharmacopeia (Ph. Eur.) contains the official standards that assure quality control of pharmaceutical products during their life cycle. According to this, the production of water for pharmaceutical use is mainly based on multi-stage distillation and membrane processes, especially, reverse osmosis. Membrane distillation (MD) could be an alternative process to these classical methods. It offers advantages in terms of energy demand and a compact apparatus design. In the following study, the preparation of pharmaceutical-grade water from tap water in a one-step process using MD is presented. Special emphasis is placed on the performance of two different module designs and on the selection of optimum process parameters
    corecore