327 research outputs found

    Protective Immunity Does Not Correlate with the Hierarchy of  Virus-specific Cytotoxic T Cell Responses to Naturally Processed Peptides

    Get PDF
    Infection of C57BL/6 mice with lymphocytic choriomeningitis virus (LCMV) stimulates major histocompatibility complex class I–restricted cytotoxic T cells (CTLs), which normally resolve the infection. Three peptide epitopes derived from LCMV have been shown to bind the mouse class I molecule H-2 Db and to stimulate CTL responses in LCMV-infected mice. This report describes the identity and abundance of each CTL epitope after their elution from LCMV-infected cells. Based on this information, peptide abundance was found to correlate with the magnitude of each CTL response generated after infection with LCMV. Subsequent experiments, performed to determine the antiviral capacity of each CTL specificity, indicate that the quantitative hierarchy of CTL activity does not correlate with the ability to protect against LCMV infection. This report, therefore, indicates that immunodominant epitopes should be defined, not only by the strength of the CTL response that they stimulate, but also by the ability of the CTLs to protect against infection

    Natural ligand motifs of H-2E molecules are allele specific and illustrate homology to HLA-DR molecules

    Get PDF
    Motifs of peptldes naturally associated with H-2Ek and Ed molecules were determined by (i) pool sequencing of natural ligand mixtures and (ii) sequencing of individual natural ligands followed by their alignment to the basic motif suggested by pool sequencing. The data reveal nine amino acid motifs with interaction sites at relative positions P1, P4, P6 and P9, with specificities that are identical at some but different at other anchor positions between Ed and Ek motifs, illustrating the different requirements for peptides to be presented by these two MHC molecules. The anchors with the most restricted specificity are P1 and P9. P1 is aliphatic for Ek and predominantly aromatic for Ed. P9 is positively charged for both molecules. P4 and P6 show a totally different amino acid preference between Ek and Ed ligand motifs. An alignment of Ed and Ek protein sequences to the recently reported HLA-DR1 pocket residues is in agreement with observed anchor residues in Ek and Ed motifs, thus confirming the predicted similarity of mouse class II E molecules with human DR molecules. Furthermore, this alignment was extended to the putative pockets of class II Eb and E* molecules, and allowed, together with sequence information of previously Identified natural ligands of Eb and E5 molecules, a prediction of their respective motifs. The information obtained by this study should be useful to identify putative class II E epltopes in proteins and to design peptides for blocking class II E molecule

    Characterization of the ribonuclease activity on the skin surface

    Get PDF
    The rapid degradation of ribonucleic acids (RNA) by ubiquitous ribonucleases limits the efficacy of new therapies based on RNA molecules. Therefore, our aim was to characterize the natural ribonuclease activities on the skin and in blood plasma i.e. at sites where many drugs in development are applied. On the skin surfaces of Homo sapiens and Mus musculus we observed dominant pyrimidine-specific ribonuclease activity. This activity is not prevented by a cap structure at the 5'-end of messenger RNA (mRNA) and is not primarily of a 5'- or 3'-exonuclease type. Moreover, the ribonuclease activity on the skin or in blood plasma is not inhibited by chemical modifications introduced at the 2'OH group of cytidine or uridine residues. It is, however, inhibited by the ribonuclease inhibitor RNasin(® )although not by the ribonuclease inhibitor SUPERase· In™. The application of our findings in the field of medical science may result in an improved efficiency of RNA-based therapies that are currently in development

    HLA-DR15-derived self-peptides are involved in increased autologous T cell proliferation in multiple sclerosis

    Get PDF
    The HLA-DR15 haplotype confers the largest part of the genetic risk to develop multiple sclerosis, a prototypic CD4+ T cell-mediated autoimmune disease. The mechanisms how certain HLA-class II molecules functionally contribute to autoimmune diseases are still poorly understood, but probably involve shaping an autoimmune-prone T cell repertoire during central tolerance in the thymus and subsequently maintaining or even expanding it in the peripheral immune system. Self-peptides that are presented by disease-associated HLA-class II molecules most likely play important roles during both processes. Here, we examined the functional involvement of the HLA-DR15 haplotype in autologous proliferation in multiple sclerosis and the contribution of HLA-DR15 haplotype-derived self-peptides in an in vitro system. We observe increased autologous T cell proliferation in patients with multiple sclerosis in relation to the multiple sclerosis risk-associated HLA-DR15 haplotype. Assuming that the spectrum of self-peptides that is presented by the two HLA-DR15 allelic products is important for sustaining autologous proliferation we performed peptide elution and identification experiments from the multiple sclerosis-associated DR15 molecules and a systematic analysis of a DR15 haplotype-derived self-peptide library. We identify HLA-derived self-peptides as potential mediators of altered autologous proliferation. Our data provide novel insights about perturbed T cell repertoire dynamics and the functional involvement of the major genetic risk factor, the HLA-DR15 haplotype, in multiple sclerosi

    More Than Just Tumor Destruction: Immunomodulation by Thermal Ablation of Cancer

    Get PDF
    Over the past decades, thermoablative techniques for the therapy of localized tumors have gained importance in the treatment of patients not eligible for surgical resection. Anecdotal reports have described spontaneous distant tumor regression after thermal ablation, indicating a possible involvement of the immune system, hence an induction of antitumor immunity after thermoinduced therapy. In recent years, a growing body of evidence for modulation of both adaptive and innate immunity, as well as for the induction of danger signals through thermoablation, has emerged. Induced immune responses, however, are mostly weak and not sufficient for the complete eradication of established tumors or durable prevention of disease progression, and combination therapies with immunomodulating drugs are being evaluated with promising results. This article aims to summarize published findings on immune modulation through radiofrequency ablation, cryoablation, microwave ablation therapy, high-intensity focused ultrasound, and laser-induced thermotherapy

    CD8+ T cells specific for a potential HLA-A*0201 epitope from Chlamydophila pneumoniae are present in the PBMCs from infected patients

    Get PDF
    Infection with the common pathogen Chlamydophila pneumoniae (Cpn, previously Chlamydia pneumoniae) has a high prevalence in patients suffering from arteriosclerosis and may trigger or contribute to heart disease. In mice, CD8-positive T cells are critical for the eradication of the infection and the development of immune memory against Cpn. Although several H2-class I epitopes have been described, no HLA-class I-associated peptides from Cpn are known. In order to define HLA-A*0201 epitopes from Cpn, we focused on the bacterial heat shock proteins (HSP) 60 and 70 which are known to be recognized by the immune system. Using epitope prediction, peptide binding studies and peptide-specific CTLs from HLA-A2 transgenic mice, we could define a potential HSP-70-derived epitope. The study of PBMCs from Cpn-infected individuals using fluorescent MHC tetramers revealed that some patients have CD8+ T cells capable of recognizing the Cpn HSP-70 HLA-A*0201 epitope. Our studies pave the way to the immunomonitoring of the anti-Cpn CTL immune response present in patients suffering from different diseases potentially linked to Cpn or anti-Cpn immunit
    • …
    corecore