15,240 research outputs found

    Inference for covariate adjusted regression via varying coefficient models

    Full text link
    We consider covariate adjusted regression (CAR), a regression method for situations where predictors and response are observed after being distorted by a multiplicative factor. The distorting factors are unknown functions of an observable covariate, where one specific distorting function is associated with each predictor or response. The dependence of both response and predictors on the same confounding covariate may alter the underlying regression relation between undistorted but unobserved predictors and response. We consider a class of highly flexible adjustment methods for parameter estimation in the underlying regression model, which is the model of interest. Asymptotic normality of the estimates is obtained by establishing a connection to varying coefficient models. These distribution results combined with proposed consistent estimates of the asymptotic variance are used for the construction of asymptotic confidence intervals for the regression coefficients. The proposed approach is illustrated with data on serum creatinine, and finite sample properties of the proposed procedures are investigated through a simulation study.Comment: Published at http://dx.doi.org/10.1214/009053606000000083 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Analysis of the (μ/μI,λ)(\mu/\mu_I,\lambda)-CSA-ES with Repair by Projection Applied to a Conically Constrained Problem

    Full text link
    Theoretical analyses of evolution strategies are indispensable for gaining a deep understanding of their inner workings. For constrained problems, rather simple problems are of interest in the current research. This work presents a theoretical analysis of a multi-recombinative evolution strategy with cumulative step size adaptation applied to a conically constrained linear optimization problem. The state of the strategy is modeled by random variables and a stochastic iterative mapping is introduced. For the analytical treatment, fluctuations are neglected and the mean value iterative system is considered. Non-linear difference equations are derived based on one-generation progress rates. Based on that, expressions for the steady state of the mean value iterative system are derived. By comparison with real algorithm runs, it is shown that for the considered assumptions, the theoretical derivations are able to predict the dynamics and the steady state values of the real runs.Comment: This is a PREPRINT of an article that has been accepted for publication in the journal MIT Press Evolutionary Computation (ECJ). 25 pages + supplementary material. The work was supported by the Austrian Science Fund FWF under grant P29651-N3
    • …
    corecore