3,307 research outputs found

    Resistance scaling at the Kosterlitz-Thouless transition

    Full text link
    We study the linear resistance at the Kosterlitz-Thouless transition by Monte Carlo simulation of vortex dynamics. Finite size scaling analysis of our data show excellent agreement with scaling properties of the Kosterlitz-Thouless transition. We also compare our results for the linear resistance with experiments. By adjusting the vortex chemical potential to an optimum value, the resistance at temperatures above the transition temperature agrees well with experiments over many decades.Comment: 7 pages, 4 postscript figures included, LATEX, KTH-CMT-94-00

    The Effect of Columnar Disorder on the Superconducting Transition of a Type-II Superconductor in Zero Applied Magnetic Field

    Full text link
    We investigate the effect of random columnar disorder on the superconducting phase transition of a type-II superconductor in zero applied magnetic field using numerical simulations of three dimensional XY and vortex loop models. We consider both an unscreened model, in which the bare magnetic penetration length is approximated as infinite, and a strongly screened model, in which the magnetic penetration length is of order the vortex core radius. We consider both equilibrium and dynamic critical exponents. We show that, as in the disorder free case, the equilibrium transitions of the unscreened and strongly screened models lie in the same universality class, however scaling is now anisotropic. We find for the correlation length exponent ν=1.2±0.1\nu=1.2\pm 0.1, and for the anisotropy exponent ζ=1.3±0.1\zeta=1.3\pm 0.1. We find different dynamic critical exponents for the unscreened and strongly screened models.Comment: 30 pages 12 ps figure

    Monte Carlo calculation of the linear resistance of a three dimensional lattice Superconductor model in the London limit

    Full text link
    We have studied the linear resistance of a three dimensional lattice Superconductor model in the London limit London lattice model by Monte Carlo simulation of the vortex loop dynamics. We find excellent finite size scaling at the phase transition. We determine the dynamical exponent z=1.51z = 1.51 for the isotropic London lattice model.Comment: 4 pages, RevTeX with 3 postscript figures include

    Scaling behavior in the β\beta-relaxation regime of a supercooled Lennard-Jones mixture

    Full text link
    We report the results of a molecular dynamics simulation of a supercooled binary Lennard-Jones mixture. By plotting the self intermediate scattering functions vs. rescaled time, we find a master curve in the β\beta-relaxation regime. This master curve can be fitted well by a power-law for almost three decades in rescaled time and the scaling time, or relaxation time, has a power-law dependence on temperature. Thus the predictions of mode-coupling-theory on the existence of a von Schweidler law are found to hold for this system; moreover, the exponents in these two power-laws are very close to satisfying the exponent relationship predicted by the mode-coupling-theory. At low temperatures, the diffusion constants also show a power-law behavior with the same critical temperature. However, the exponent for diffusion differs from that of the relaxation time, a result that is in disagreement with the theory.Comment: 8 pages, RevTex, four postscript figures available on request, MZ-Physics-10

    Monte Carlo calculation of the current-voltage characteristics of a two dimensional lattice Coulomb gas

    Full text link
    We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent a(T)a(T) of the nonlinear current-voltage characteristic, VIa(T)+1V \sim I^{a(T)+1}. The determinations rely on both equilibrium and non-equilibrium simulations. We find good agreement between the different determinations, and our results also agree closely with experimental results for Hg-Xe thin film superconductors and for certain single crystal thin-film high temperature superconductors.Comment: late

    Evidence of Two Distinct Dynamic Critical Exponents in Connection with Vortex Physics

    Full text link
    The dynamic critical exponent zz is determined from numerical simulations for the three-dimensional (3D) lattice Coulomb gas (LCG) and the 3D XY models with relaxational dynamics. It is suggested that the dynamics is characterized by two distinct dynamic critical indices z0z_0 and zz related to the divergence of the relaxation time τ\tau by τξz0\tau\propto \xi^{z_0} and τkz\tau\propto k^{-z}, where ξ\xi is the correlation length and kk the wavevector. The values determined are z01.5z_0\approx 1.5 and z1z\approx 1 for the 3D LCG and z01.5z_0\approx 1.5 and z2z\approx 2 for the 3D XY model. It is argued that the nonlinear IVIV exponent relates to z0z_0, whereas the usual Hohenberg-Halperin classification relates to zz. Possible implications for the interpretation of experiments are pointed out. Comparisons with other existing results are discussed.Comment: to appear in PR

    Automated Inspection Device for Explosive Charge in Shells - AIDECS

    Get PDF
    Certain defects in the explosive charge of an artillery shell can cause the projectile to explode prematurely in the barrel of the launcher from which it is fired. The sensitivity of the radiographic technique presently used is limited by the large influence of the steel shell casing on the transmitted radiation. A filmless radiometric technique utilizing the basic radiation principle of Compton scattering, which will detect cavities in the explosive filler with minimal interference from the steel casing, has been identified and tested. By scanning the shell with a beam of radiation and observing the Compton scattering through a unique collimating system, it has been possible to detect voids as small as 1/16 inch in cross section. The hardware consists of the source, beam collimator, detector collimator, and a large plastic scintillator detector system. The projectile is inserted into the beam path and moved through a fixed scanning pattern by a mechanical handling system. The scanning sequence is computer contra ll ed and results in a threedimensional data matrix giving a direct representation of density within the projectile. Voids are identified and classified by computer analysis, and shell acceptability decisions are automatically generated. An engineering prototype system is currently being assembled and tested. (A production prototype conceptual design is concurrently under development.) This new technique will replace an existing film radiography inspection procedure and eliminate the need for human interpretation of the defects, while providing more consistent and reliable inspections at lower costs

    Black hole masses and enrichment of z ~ 6 SDSS quasars

    Full text link
    We present sensitive near-infrared spectroscopic observations for a sample of five z ~ 6 quasars. These are amongst the most distant, currently known quasars in the universe. The spectra have been obtained using ISAAC at the VLT and include the CIV, MgII and FeII lines. We measure the FeII/MgII line ratio, as an observational proxy for the Fe/alpha element ratio. We derive a ratio of 2.7+/-0.8 for our sample, which is similar to that found for lower redshift quasars, i.e., we provide additional evidence for the lack of evolution in the FeII/MgII line ratio of quasars up to the highest redshifts. This result demonstrates that the sample quasars must have undergone a major episode of iron enrichment in less than one Gyr and star formation must have commenced at z > 8. The linewidths of the MgII and CIV lines give two estimates for the black hole masses. A third estimate is given by assuming that the quasars emit at their Eddington luminosity. The derived masses using these three methods agree well, implying that the quasars are not likely to be strongly lensed. We derive central black hole masses of 0.3-5.2 10^9 solar masses. We use the difference between the redshift of MgII (a proxy for the systemic redshift of the quasar) and the onset of the Gunn Peterson trough to derive the extent of the ionized Stromgren spheres around our target quasars. The derived physical radii are about five Mpc. Using a simple ionization model, the emission of the central quasars would need of order 10^6-10^8 year to create these cavities in a surrounding intergalactic medium with a neutral fraction between 0.1 and 1.0. As the e-folding time scale for the central accreting black hole is on the order of a few times 10^7 year, it can grow by one e-folding or less within this time span.Comment: Accepted by ApJ, 15 pages, 8 figure

    Regulatory T Cells and IL-10 Independently Counterregulate Cytotoxic T Lymphocyte Responses Induced by Transcutaneous Immunization

    Get PDF
    The imidazoquinoline derivate imiquimod induces inflammatory responses and protection against transplanted tumors when applied to the skin in combination with a cognate peptide epitope (transcutaneous immunization, TCI). Here we investigated the role of regulatory T cells (T(reg)) and the suppressive cytokine IL-10 in restricting TCI-induced cytotoxic T lymphocyte (CTL) responses.TCI was performed with an ointment containing the TLR7 agonist imiquimod and a CTL epitope was applied to the depilated back skin of C57BL/6 mice. Using specific antibodies and FoxP3-diphteria toxin receptor transgenic (DEREG) mice, we interrogated inhibiting factors after TCI: by depleting FoxP3(+) regulatory T cells we found that specific CTL-responses were greatly enhanced. Beyond this, in IL-10 deficient (IL-10(-/-)) mice or after blocking of IL-10 signalling with an IL-10 receptor specific antibody, the TCI induced CTL response is greatly enhanced indicating an important role for this cytokine in TCI. However, by transfer of T(reg) in IL-10(-/-) mice and the use of B cell deficient JHT(-/-) mice, we can exclude T(reg) and B cells as source of IL-10 in the setting of TCI.We identify T(reg) and IL-10 as two important and independently acting suppressors of CTL-responses induced by transcutaneous immunization. Advanced vaccination strategies inhibiting T(reg) function and IL-10 release may lead the development of effective vaccination protocols aiming at the induction of T cell responses suitable for the prophylaxis or treatment of persistent infections or tumors

    Possible first order transition in the two-dimensional Ginzburg-Landau model induced by thermally fluctuating vortex cores

    Full text link
    We study the two-dimensional Ginzburg-Landau model of a neutral superfluid in the vicinity of the vortex unbinding transition. The model is mapped onto an effective interacting vortex gas by a systematic perturbative elimination of all fluctuating degrees of freedom (amplitude {\em and} phase of the order parameter field) except the vortex positions. In the Coulomb gas descriptions derived previously in the literature, thermal amplitude fluctuations were neglected altogether. We argue that, if one includes the latter, the vortices still form a two- dimensional Coulomb gas, but the vortex fugacity can be substantially raised. Under the assumption that Minnhagen's generic phase diagram of the two- dimensional Coulomb gas is correct, our results then point to a first order transition rather than a Kosterlitz-Thouless transition, provided the Ginzburg-Landau correlation length is large enough in units of a microscopic cutoff length for fluctuations. The experimental relevance of these results is briefly discussed. [Submitted to J. Stat. Phys.]Comment: 36 pages, LaTeX, 6 figures upon request, UATP2-DB1-9
    corecore