91 research outputs found

    Plasma polymerization for biomedical applications: A review

    Get PDF
    Plasma polymers have long been of interest as thin film coatings on biomedical devices and products, to generate desirable surface properties for favorable bio-interfacial interactions. Plasma polymers have also been used as platforms for the covalent immobilization of bioactive molecules. More recently, additional aspects have been investigated, such as selective prevention of adhesion of microbial pathogens, either via plasma polymers per se or including antimicrobial drugs. Plasma polymers have also been investigated for the release of silver ions and small organic molecules. Complementing low-pressure plasma approaches, processes at atmospheric pressure have attracted interest recently, including for nano/biocomposite coatings. This contribution reviews the use of plasma polymers for intended biomedical applications, with a focus on more recent topic areas

    Switchable surface coatings for control over protein adsorption

    Get PDF
    Control over biomolecule interactions at interfaces is becoming an increasingly important goal for a range of scientific fields and is being intensively studied in areas of biotechnological, biomedical and materials science. Improvement in the control over materials and biomolecules is particularly important to applications such as arrays, biosensors, tissue engineering, drug delivery and 'lab on a chip' devices. Further development of these devices is expected to be achieved with thin coatings of stimuli responsive materials that can have their chemical properties 'switched' or tuned to stimulate a certain biological response such as adsorptionldesorption of proteins. Switchable coatings show great potential for the realisation of spatial and temporal immobilisation of cells and biomolecules such as DNA and proteins. This study focuses on protein adsorption onto coatings of the thermosensitive polymer poly(N-isopropylacrylamide) (pNIPAM) which can exhibit low and high protein adsorption properties based on its temperature dependent conformation. At temperatures above its lower critical solution temperature (LCST) pNIPAM polymer chains are collapsed and protein adsorbing whilst below the LCST they are hydrated and protein repellent. Coatings of pNIPAM on silicon wafers were prepared by free radical polymerisation in the presence of surface bound polymerisable groups. Surface analysis and protein adsorption was carried out using X-ray photoelectron spectroscopy, time of flight secondary ion mass spectrometry and contact angle measurements. This study is expected to aid the development of stimuli-responsive coatings for biochips and biodevices.Bellingham, US

    XPS study of sulfur and phosphorus compounds with different oxidation states

    Get PDF
    In this report, we demonstrate that continuous improvement in XPS instruments and the calibration standards as well as analysis with standard component-fitting procedures can be used to determine the binding energies of compounds containing phosphorus and sulfur of different oxidation states with higher confidence. Based on such improved XPS analyses, the binding energies (BEs) of S2p signals for sulfur of increasing oxidation state are determined to be 166-167.5 eV for S=O in dimethyl sulfoxide, 168.1 eV for S=O2 in polysulfone, 168.4 eV for SO3 in polystyrene sulfonate and 168.8 eV for SO4 in chondroitin sulfate. The BEs of P2p signals show the following values: 132.9 eV for PO3 in triisopropyl phosphite, 133.3 eV for PO4 in glycerol phosphate, 133.5 eV for PO4 in sodium tripolyphosphate and 134.0 eV for PO4 in sodium hexametaphosphate. These results showed that there are only small increases in the binding energy when additional oxygen atoms are added to the S-O chemical group. A similar result is obtained when the fourth oxygen or poly-phosphate environment is added to the phosphorus compound. These BE values are useful to researchers involved in identifying oxidation states of phosphorus and sulfur atoms commonly observed on modified surfaces and interfaces found in applications such as biomaterials, super-capacitors and catalysis

    Antifungal coatings by caspofungin immobilization onto biomaterials surfaces via a plasma polymer interlayer

    Get PDF
    Published Online: 14 October 2015Not only bacteria but also fungal pathogens, particularly Candida species, can lead to biofilm infections on biomedical devices. By covalent grafting of the antifungal drug caspofungin, which targets the fungal cell wall, onto solid biomaterials, a surface layer can be created that might be able to provide long-term protection against fungal biofilm formation. Plasma polymerization of propionaldehyde (propanal) was used to deposit a thin (∼20 nm) interfacial bonding layer bearing aldehyde surface groups that can react with amine groups of caspofungin to form covalent interfacial bonds for immobilization. Surface analyses by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed the intended grafting and uniformity of the coatings, and durability upon extended washing. Testing for fungal cell attachment and ensuing biofilm formation showed that caspofungin retained activity when covalently bound onto surfaces, disrupting colonizing Candida cells. Mammalian cytotoxicity studies using human primary fibroblasts indicated that the caspofungin-grafted surfaces were selective in eliminating fungal cells while allowing attachment and spreading of mammalian cells. These in vitro data suggest promise for use as antifungal coatings, for example, on catheters, and the use of a plasma polymer interlayer enables facile transfer of the coating method onto a wide variety of biomaterials and biomedical devices.Stefani S. Griesser, Marek Jasieniak, Bryan R. Coad, and Hans J. Griesse

    Antimicrobial Peptides Grafted onto a Plasma Polymer Interlayer Platform: Performance upon Extended Bacterial Challenge

    No full text
    To combat infections on biomedical devices, antimicrobial coatings have attracted considerable attention, including coatings comprising naturally occurring antimicrobial peptides (AMPs). In this study the aim was to explore performance upon extended challenge by bacteria growing in media above samples. The AMPs LL37, Magainin 2, and Parasin 1 were selected on the basis of well-known membrane disruption activity in solution and were covalently grafted onto a plasma polymer platform, which enables application of this multilayer coating strategy to a wide range of biomaterials. Detailed surface analyses were performed to verify the intended outcomes of the coating sequence. Samples were challenged by incubation in bacterial growth media for 5 and 20 h. Compared with the control plasma polymer surface, all three grafted AMP coatings showed considerable reductions in bacterial colonization even at the high bacterial challenge of initial seeding at 1 × 107 CFU, but there were increasing numbers of dead bacteria attached to the surface. All three grafted AMP coatings were found to be non-toxic to primary fibroblasts. These coatings thus could be useful to produce antibacterial surface coatings for biomaterials, though possible consequences arising from the presence of dead bacteria need to be studied further, and compared to non-fouling coatings that avoid attachment of dead bacteria

    Special issue: Plasmas for Biointerfaces

    No full text
    [Extract] The interactions of materials with biological entities—bacteria, cells, blood, tissues, etc.—occur at their surface rather than within their bulk, eventually driving the biocompatibility and the success of a wide range of biomedical products such as prostheses, implants, devices, and lab wares. This concept, fully accepted in the biomaterials scientific and technological community, has always generated great interest in material surface modification technologies, among which non-equilibrium plasmas have always played a prominent role. Disposable tissue culture polystyrene (TCPS) plates, for example, could completely substitute glass Petri dishes in biological lab protocols in the late 1970s due to the efficacy of surface modification plasma processes[1] capable of permanently altering the surface of PS from hydrophobic to hydrophilic, for greatly enhanced cell adhesion and growth. Since then, many other surface modification plasma processes have been investigated and scaled up to products, with the joint interdisciplinary efforts of plasma scientists, biologists, engineers, veterinarians, and medical doctors. Indeed, collaboration among such different types of scientists is at the origin, more recently, of the discipline of plasma medicine, where atmospheric pressure (AP) plasmas are investigated in direct or indirect contact with cells and tissues for therapeutic purposes
    • …
    corecore