1,863 research outputs found

    Multicore Performance of Block Algebraic Iterative Reconstruction Methods

    Get PDF

    Multi-elemental speciation analysis of barley genotypes diering in tolerance to cadmium toxicity using SEC-ICP-MS and ESI-TOF-MS

    Get PDF
    Plants respond to Cd exposure by synthesizing heavy-metal-binding oligopeptides, called phytochelatins (PCs). These peptides reduce the activity of Cd2+ ions in the plant tissues by forming Cd chelates. The main objective of the present work was to develop an analytical technique, which allowed identication of the most prominent Cd species in plant tissue by SEC-ICP-MS and ESI-TOF-MS. An integrated part of the method development was to test the hypothesis that dierential Cd tolerance between two barley genotypes was linked to dierences in Cd speciation. Only one fraction of Cd species, ranging from 7001800 Da, was detected in the shoots of both genotypes. In the roots, two additional fractions ranging from 29004600 and 670015 000 Da were found. The Cd-rich SEC fractions were heart-cut, de-salted and demetallized using reversed-phase chromatography (RPC), followed by ESI-MS-TOF to identify the ligands. Three dierent families of PCs, viz. (gGlu-Cys)n-Gly (PCn), (gGlu-Cys)n-Ser (iso-PCn) and Cys-(gGlu-Cys)n-Gly (des-gGlu-PCn), the last lacking the N-terminal amino acid, were identied. The PCs induced by Cd toxicity also bound several essential trace elements in plants, including Zn, Cu, and Ni, whereas no Mn species were detected. Zn, Cu and Ni-species were distributed between the 7001800 Da and 670015 000 Da fractions, whereas only Cd species were found in the 29004600 Da fraction dominated by PC3 ligands. Although the total tissue concentration of Cd was similar for the two species, the tolerant barley genotype synthesized signicantly more CdPC3 species with a high Cd specicity than the intolerant genotype, clearly indicating a correlation between Cd tolerance and the CdPC speciation

    Efficient wave function matching approach for quantum transport calculations

    Get PDF
    The Wave Function Matching (WFM) technique has recently been developed for the calculation of electronic transport in quantum two-probe systems. In terms of efficiency it is comparable with the widely used Green's function approach. The WFM formalism presented so far requires the evaluation of all the propagating and evanescent bulk modes of the left and right electrodes in order to obtain the correct coupling between device and electrode regions. In this paper we will describe a modified WFM approach that allows for the exclusion of the vast majority of the evanescent modes in all parts of the calculation. This approach makes it feasible to apply iterative techniques to efficiently determine the few required bulk modes, which allows for a significant reduction of the computational expense of the WFM method. We illustrate the efficiency of the method on a carbon nanotube field-effect-transistor (FET) device displaying band-to-band tunneling and modeled within the semi-empirical Extended H\"uckel theory (EHT) framework.Comment: Submitted to Phys. Rev.

    Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel

    Get PDF
    We have generated a single-wavelength data signal with a data capacity of 5.1 Tbit/s. The enabling techniques to generate the data signal are optical time-division multiplexing up to a symbol rate of 1.28 Tbaud, differential quadrature phase shift keying as data format, and polarisation-multiplexing. For the first time, error-free performance with a bit error rate less than 10-9 is demonstrated for the 5.1 Tbit/s data signal. This is achieved in a back-to-back configuration using a direct detection receiver based on polarisation- and time-demultiplexing, delay-demodulation and balanced photo-detection.</p

    A new class of IMP dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many secondary metabolites produced by filamentous fungi have potent biological activities, to which the producer organism must be resistant. An example of pharmaceutical interest is mycophenolic acid (MPA), an immunosuppressant molecule produced by several <it>Penicillium </it>species. The target of MPA is inosine-5'-monophosphate dehydrogenase (IMPDH), which catalyses the rate limiting step in the synthesis of guanine nucleotides. The recent discovery of the MPA biosynthetic gene cluster from <it>Penicillium brevicompactum </it>revealed an extra copy of the IMPDH-encoding gene (<it>mpaF</it>) embedded within the cluster. This finding suggests that the key component of MPA self resistance is likely based on the IMPDH encoded by <it>mpaF</it>.</p> <p>Results</p> <p>In accordance with our hypothesis, heterologous expression of <it>mpaF </it>dramatically increased MPA resistance in a model fungus, <it>Aspergillus nidulans</it>, which does not produce MPA. The growth of an <it>A. nidulans </it>strain expressing <it>mpaF </it>was only marginally affected by MPA at concentrations as high as 200 Îźg/ml. To further substantiate the role of <it>mpaF </it>in MPA resistance, we searched for <it>mpaF </it>orthologs in six MPA producer/non-producer strains from <it>Penicillium </it>subgenus <it>Penicillium</it>. All six strains were found to hold two copies of IMPDH. A cladistic analysis based on the corresponding cDNA sequences revealed a novel group constituting <it>mpaF </it>homologs. Interestingly, a conserved tyrosine residue in the original class of IMPDHs is replaced by a phenylalanine residue in the new IMPDH class.</p> <p>Conclusions</p> <p>We identified a novel variant of the IMPDH-encoding gene in six different strains from <it>Penicillium </it>subgenus <it>Penicillium</it>. The novel IMPDH variant from MPA producer <it>P. brevicompactum </it>was shown to confer a high degree of MPA resistance when expressed in a non-producer fungus. Our study provides a basis for understanding the molecular mechanism of MPA resistance and has relevance for biotechnological and pharmaceutical applications.</p
    • …
    corecore