

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Multicore Performance of Block Algebraic Iterative Reconstruction Methods

Sørensen, Hans Henrik Brandenborg; Hansen, Per Christian

Published in:
S I A M Journal on Scientific Computing

Link to article, DOI:
10.1137/130920642

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Sørensen, H. H. B., & Hansen, P. C. (2014). Multicore Performance of Block Algebraic Iterative Reconstruction
Methods. S I A M Journal on Scientific Computing, 36(5), C524-C546. DOI: 10.1137/130920642

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43245412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1137/130920642
http://orbit.dtu.dk/en/publications/multicore-performance-of-block-algebraic-iterative-reconstruction-methods(7e564afc-6b55-4de8-8eb6-b082af875acd).html

MULTI-CORE PERFORMANCE OF BLOCK ALGEBRAIC
ITERATIVE RECONSTRUCTION METHODS

HANS HENRIK B. SØRENSEN∗ AND PER CHRISTIAN HANSEN∗

Abstract. Algebraic iterative methods are routinely used for solving the ill-posed sparse linear
systems arising in tomographic image reconstruction. Here we consider the Algebraic Reconstruction
Techniques (ART) and the Simultaneous Iterative Reconstruction Techniques (SIRT), both of which
rely on semi-convergence. Block versions of these methods, based on a partitioning of the linear
system, are able to combine the fast semi-convergence of ART with the better multi-core properties
of SIRT. These block methods separate into two classes: those that, in each iteration, access the
blocks in a sequential manner, and those that compute a result for each block in parallel and then
combine these results before the next iteration. The goal of this work is to demonstrate which
block methods are best suited for implementation on modern multi-core computers. To compare
the performance of the different block methods we use a fixed relaxation parameter in each method,
namely, the one that leads to the fastest semi-convergence. Computational results show that for
multi-core computers, the sequential approach is preferable.

Key words. algebraic iterative reconstruction, ART, SIRT, block methods, relaxation param-
eter, semi-convergence, tomographic imaging

AMS subject classifications. 65F10 (Iterative methods for linear systems), 65R32 (Inverse
problems)

1. Introduction. Discretizations of tomographic imaging problems often lead
to large sparse systems of linear equations with noisy data:

Ax ≃ b, b = b̄+ e, A ∈ Rm×n. (1.1)

Here b̄ = A x̄ denotes the exact data, x̄ is the exact solution, and e is the perturbation
consisting of additive noise. The sparse matrix A models the forward problem; there
are no restrictions on its dimensions, and both over- and under-determined systems
arise in applications—depending on the amount of data in a given experiment. For
examples of such system, see [3], [4], [29], [40].

Iterative algorithms are ideal for solving the large-scale problem (1.1) [30] and
several classes of methods have emerged [19]. They have in common that they produce
regularized solutions to problems with noisy data, i.e., solutions that approximate the
exact and unknown solution x̄ without being too sensitive to the perturbation e. This
work focuses on two specific classes of algebraic iterative methods, both of which are
often used in tomographic imaging: the Algebraic Reconstruction Technique (ART)
and the Simultaneous Iterative Reconstruction Technique (SIRT), and in particular
block extensions of these two methods. In our approach, we assume that the matrix
A is generated prior to the reconstruction procedure and provided as input data, in
contrast to matrix-free approaches.

The number of computing cores on contemporary computer platforms increases
rapidly, which spawns an increased need for parallelism. The importance of utilizing
the memory hierarchy for data locality makes it more difficult to choose the most
appropriate algebraic reconstruction algorithm for a given setup. This work rigorously
investigates the multi-core computational performance of block algebraic iterative

∗Department of Applied Mathematics and Computer Science, Technical University of Denmark,
DK-2800 Lyngby, Denmark ({hhbs,pcha}@dtu.dk). This project is supported by grants no. 274-07-
0065 and 09-070032 from the Danish Research Council for Technology and Production Sciences.

1

2 H. H. B. SØRENSEN AND P. C. HANSEN

reconstruction methods using the OpenMP framework; see [34] for an MPI-based
application on a heterogeneous computing cluster.

The goal of our work is to study the performance of the block methods on state-
of-the-art hardware, where block operations are preferred. To do so we describe two
different ways to obtain block methods, and we show how they relate to the standard
ART and SIRT methods and how they encompass various block methods that have
already been described in the literature. We also present a thorough comparison of
these methods on realistic model problems, with emphasis on computational perfor-
mance and computing speed. Some early works on block methods are [2], [7], [14], and
[48]. A specific study of the block approach in the Diagonally Relaxed Orthogonal
Projection (DROP) method can be found in [12].

Our paper gives a framework for describing block algebraic iterative methods,
and in this respect it is similar in spirit to [32] and [44]. Our emphasis, however,
is on implementation aspects, and our main contribution is a careful comparison of
the methods in which we pay attention to core factors that influence the convergence
speed—such as the row ordering, the block size, structural orthogonality of the rows,
and the choice of the relaxation (step-length) parameter. We also study the role played
by blocks consisting of structurally orthogonal rows. All our algorithms are imple-
mented in C and carefully tuned for optimal cache usage and for multi-threading using
OpenMP. We present numerical experiments on two different multi-core platforms
for a variety of block partitionings.

We are solely concerned with the semi-convergence of the methods when applied to
noisy data (asymptotic convergence is a different issue). There are several techniques
for adjusting the relaxation parameter in each iteration (see, e.g., [28]); but including
a thorough study of these non-stationary methods would only distract from our main
focus – the handling of the blocks. Instead we use a carefully chosen fixed relaxation
parameter for each method. For the same reason we do not consider stopping criteria.

The paper is organized as follows. We start with a summary of the basic algebraic
iterative reconstruction methods in Section 2, where we also discuss the choice of the
relaxation parameter. In Section 3 we present the framework for the block methods
and introduce important special cases, and we discuss the influence of structurally
orthogonal rows. The main results are presented in Section 4 where we compare the
performance of the block methods on two large-scale model problems. An appendix
summarizes row ordering techniques and their influence on the convergence and, in
particular, on the choice of the blocks.

2. Algebraic Iterative Reconstruction Methods. In this section we briefly
summarize the basic algebraic iterative methods and set the notation and ideas for
the following chapters. Throughout, aTi denotes the ith row of A, λ is a relaxation
parameter, and PC denotes the orthogonal projection on the convex set C—such as
the positive orthant giving nonnegative solutions. We also discuss our strategy for
computing the optimal fixed value of the relaxation parameter λ. We refer to [20],
[29], [40] for more details and convergence analysis. The reader should take note
that there is no consistent naming convention across the imaging literature for all the
methods considered here; we take care to define which methods we consider, and give
a summary of the methods, with references, in Table 3.1.

2.1. The Basic Methods. ART (Algebraic Reconstruction Technique) meth-
ods are inherently sequential, in that they treat the rows one at a time in a certain
order (the difference between the methods lies in the choice of this order; see [24] for
the original work). In the literature, “ART” may refer to slightly different methods

BLOCK ALGEBRAIC ITERATIVE RECONSTRUCTION METHODS 3

with and without projections; here we use it synonymously with the classical Kacz-
marz method [33] augmented with a projection PC , where the kth iteration involves
a sweep over the rows of A:

Algorithm: xk ← ART-sweep (λ,A, b, xk−1)

xk,0 = xk−1

xk,i = PC

(
xk,i−1 + λ

bi − aTi xk,i−1

∥ai∥22
ai

)
, i = 1, . . . ,m

xk = xk,m.

The asymptotic convergence of this method requires 0 < λ < 2 and is governed by
cond(A), the condition number of A; e.g., if the system is square and has full rank,
λ = 1, and A has unit rows that are chosen randomly with equal probability then

E
(
∥xk − x∗∥22

)
≤

(
1− 1

cond(A)2

)k

∥x0 − x∗∥22 , (2.1)

where x∗ = A−1 b and E(·) denotes the expected value [47]. In particular, if all rows
are orthogonal then ART converges in one sweep (this follows from (2.1) when the
rows are orthonormal ⇒ cond(A) = 1). See [16] for a more general treatment of the
convergence. ART methods are recognized for having fast initial convergence when
used for image reconstruction problems if λ is chosen properly.

SIRT (Simultaneous Iterative Reconstruction Technique) methods involve all the
rows of A simultaneously, and thus involve matrix-vector products. Similar to ART,
the term “SIRT” refers to slightly different methods in the literature; this paper
follows [49] and SIRT denotes methods1 where the kth iteration takes the generic
form

xk = PC
(
xk−1 + λTATM (b−Axk−1)

)
. (2.2)

Here T and M are positive definite matrices, and asymptotic convergence requires
that that 0 < λ < 2/∥T−1/2AM 1/2∥22. By selecting different T and M we obtain
well-established SIRT methods. Landweber’s method [36] corresponds to T = I and
M = I, and Cimmino’s method2 [6] is obtained by T = I and M = diag(1/∥ai∥22)
corresponding to normalizing the rows of A. The CAV (component averaging) method
[9] corresponds to T = I and M = diag(1/

∑n
j=1 νja

2
ij), where νj is the number of

nonzeros in the jth column of A. The single-block DROP method [9, 12] is defined
by the same M as for Cimmino’s method and with T = diag(m/νj). In 1972 Gilbert
[21] defined an algorithm called “SIRT” which differs from our SIRT methods.

Note that if rank(A) = m and we choose M = (AAT)−1 then ATM is the
pseudoinverse of A and (2.2) converges in one step if PC is the identity. The different
SIRT algorithms correspond to different diagonal approximations to (AAT)−1; e.g.,
we obtain Cimmino with M = diag(AAT)−1.

The asymptotic convergence of SIRT is governed by cond(M 1/2A); it follows from
Thm. 2.1.15 in [42] that if we choose λ slightly smaller than 2/∥M 1/2A∥22 then

∥xk − x∗∥2 <∼

(
cond(M 1/2A)2 − 1

cond(M 1/2A)2 + 1

)k

∥x0 − x∗∥2 , (2.3)

1These methods might also be called “Cimmino-type methods.”
2A scaling factor 1/m or 2/m is sometimes included in M .

4 H. H. B. SØRENSEN AND P. C. HANSEN

0 200 400 600 800 1000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Iteration k

R
e
la
t
iv
e
e
r
r
o
r

8.72e+00
1.11e+01
1.42e+01
1.82e+01
2.33e+01
2.97e+01
3.80e+01
4.85e+01
6.20e+01
7.92e+01
8.68e+01
8.70e+01

0 20 40 60 80 100
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Iteration k

R
e
la
t
iv
e
e
r
r
o
r

8.72e+00
1.11e+01
1.42e+01
1.82e+01
2.33e+01
2.97e+01
3.80e+01
4.85e+01
6.20e+01
7.92e+01
8.68e+01
8.70e+01

Fig. 2.1. Typical errors histories ∥x̄ − xk∥2/∥x̄∥2 for different choices of λ. The dashed line
corresponds to the smallest relative error within kmax iterations. Left: kmax = 1000 is large enough
that semi-convergence is observed for a range of λ-values. Right: kmax = 100 is not large enough
that semi-convergence can take place, and the minimum error is attained for k = kmax. In both
cases, the thick line shows the error history corresponding to the optimal λ.

where x∗ is the solution to minx ∥M 1/2(Ax−b)∥2. See [15] for a summary of asymptotic
convergence properties and references to original papers.

For all ART and SIRT methods we use the starting vector x0 = 0. There is no
evidence that other choices lead to any significant improvement in the reconstructions
or savings in computing time; see, e.g., [30], [50].

The basic computational task of an ART iteration is a sequence of consecutive
inner products. Since the number of nonzero elements in a row ai of A is small it
is difficult to implement this method efficiently on modern computer platforms; it
does not lend itself well to parallel implementation, neither can it take advantage of
the block matrix operations that typically increase computational speed. In contrast,
the basic computational step in the SIRT methods is composed of two matrix-vector
operations, which lend themselves to efficient implementation on current hardware.

2.2. The Influence of the Relaxation Parameter. ART and SIRT exhibit
semi-convergence [40] when applied to noisy data. During the first iterations the
iterates approach the exact solution x̄, and after this stage the iterates start to diverge
from x̄ and instead converge to a solution that is dominated by noise, cf. [16], [18],
[27].

The relaxation parameter λ plays an important role during the semi-convergence
phase. The choice of λ is critical; if it is too small then we have very slow convergence,
and if it too large then the process exhibits neither convergence nor semi-convergence.
For inconsistent problems a diminishing step-size strategy is needed to ensure asymp-
totic convergence, while a fixed λ still provides semi-convergence (see, e.g., [15], [18]).

Figure 2.1 illustrates the influence of λ; the different curves are the error histories
∥x̄− xk∥2/∥x̄∥2 for different choices of λ, and the dashed line is the smallest relative
error obtained within kmax iterations. To emphasize the semi-convergence behavior
we use a small 2D parallel-beam test problem with a 32× 32 Shepp-Logan phantom,
36 projections of 32 pixels each, and 5% noise in the data (generated with AIR Tools
[28]). Assume first that kmax is large enough that semi-convergence takes place for
a range of λ-values, as shown in the left plot. The thick line shows the error history
corresponding to the optimal λ, i.e., the one that reaches the smallest relative error

BLOCK ALGEBRAIC ITERATIVE RECONSTRUCTION METHODS 5

I te rat ion k

R
e
la
t
iv
e
e
r
r
o
r

Equivalence of SIRT methods

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1
Landweber
C immino
CAV
DROP

I te rat ion k

R
e
la
ti
v
e
e
rr
o
r

ART vs. SIRT (Cimmino)

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1
ART λ = 0.01
SIRT λ = 0.01
ART λ op t= 1.56
SIRT λ op t= 0.21

Fig. 2.2. Error histories of the different basic methods (we used the small test problem described
in §4.1). The left figure shows a comparison of different SIRT methods for optimal choices of the
fixed relaxation parameter λ. The right figure shows a comparison of ART and SIRT for a very small
fixed relaxation parameter of λ = 0.01 and for optimal choices of the fixed relaxation parameter.

0.48 in the smallest number of iterations k ≈ 250. Note that some of the error histories
(for the largest values of λ) do not reach the minimum attainable error.

Now assume that kmax is so small that semi-convergence does not take place, i.e.,
all errors histories have a minimum at k = kmax; then the optimal λ is the one that
reaches the smallest relative error 0.495 at k = kmax. Note that the relative error here
is larger than for the case where kmax is large enough to provide semi-convergence.

Figure 2.2 adds further insight into the dependence of the algorithms on λ. The
left part shows the error history for four SIRT methods, using the optimal relaxation
parameter for each method. All methods have almost identical convergence histories,
and therefore we need only consider the Cimmino method—denoted SIRT from now
on.

The right part of Fig. 2.2 compares the convergence histories for ART and SIRT.
For very small values of λ we observe that the convergence of both methods is practi-
cally identical; this is consistent with the conclusions in [48]. If we choose the optimal
λ for each method, then ART converges considerably faster than SIRT, in the sense
that ART achieves the minimum error in far fewer iterations than SIRT. We note
the relation between, on the one hand, ART and SIRT and, on the other hand, the
Jacobi and Gauss-Seidel iterative schemes, where a similar difference in convergence
rate is observed.

2.3. Computing the Optimal Fixed Relaxation Parameter. Recall that
we define the optimal value of λ for a given method as the one that reaches the smallest
error in the smallest number of iterations; such a value only exists for problems
that give rise to semi-convergence, i.e., problems with noisy data. Our approach to
computing the optimal λ extends the training technique from [28].

The key idea in this technique is to find the parameter that, for noisy data,
minimizes the relative error ∥x̄ − xk∥2/∥x̄∥2 in the smallest number of iterations,
within a maximum number of iterations kmax (this obviously requires that we have
access to a model problem for which the exact solution x̄ is known). We note that
if semi-convergence occurs within kmax iterations, then for the SIRT methods the
minimum error is practically independent of λ [18]. While the same is sometimes
observed for the ART methods, this is not guaranteed to always be the case.

Here we outline a training procedure to target a specific relative error ηtarget

6 H. H. B. SØRENSEN AND P. C. HANSEN

within a small tolerance in a robust manner. The user must specify the matrix A, the
noisy right-hand side b, the exact solution x̄, and the maximum number of iterations
kmax. Our algorithm to compute the optimal relaxation parameter λopt then takes
the form:

Algorithm: ORP (Optimal Relaxation Parameter)
1. Initialization:

(a) Find the λ in the permissible range for convergence that gives the small-
est relative error ηmin within kmax iterations. Denote this λ by λmin.

(b) Set the target relative error ηtarget ≥ ηmin.
2. Find the smallest λ < λmin that, within a small tolerance, reaches the target

error ηtarget in at most kmax iterations. Denote this λ by λ.
3. Find the largest λ > λmin that, within a small tolerance, reaches the target

error ηtarget in at most kmax iterations. Denote this λ by λ̄.
4. Find the λ ∈ [λ, λ̄] that, within a small tolerance, reaches the target error

ηtarget in the smallest number of iterations, and set λopt equal to this λ.

To fairly compare different (block) algebraic methods on a given problem using an
optimal fixed relaxation parameter λopt, we make sure that all the methods of interest
are able to reach, within a small tolerance, the same ηmin. This way, no method will
be considered unless it is able to reach the same minimum relative error as all the
other methods.

3. Block Methods. In this section, we give an overview and a framework for
block methods based on the above ART and SIRT methods. The basic idea of the
block methods is to partition the matrix A and the right-hand side b of (1.1) into a
total of p of blocks. We write

A =

A1

A2

...
Ap

 , b =

b1
b2
...
bp

 , Aℓ ∈ Rmℓ×n, ℓ = 1, . . . , p, (3.1)

where mℓ is the number of rows of the ℓth block Aℓ. For more details about the block
methods and their convergence, see, e.g., [7], [13], [17], [32], [41].

Following to the classification in [7] we distinguish between methods that access
the blocks either sequentially or in parallel. The former methods, in each iteration,
access the blocks in a sequential manner, while the latter methods compute a result
for each blocks in parallel and then combine these results before the next iteration. In
this context, one iteration of a block method is performed when all blocks have been
processed—either in sequence or in parallel. The distinction between the two types of
methods precisely reflects the structure of the basic ART and SIRT methods described
in the previous section. Table 3.1 gives a convenient overview of the algorithms
together with some original names and relevant references.

3.1. Block-Sequential Methods. Common for these methods is that they
treat the blocks of A sequentially (similar to how ART treats the rows of A). How
we specifically treat the blocks defines the block-sequential method.

Consider first the situation where we sequentially apply a SIRT method to each
block. In the kth iteration, the input to the treatment of the first block is the previous
iteration vector xk−1, and it produces the intermediate vector xk,1. This vector,
then, is used as the input for the treatment of the second block, producing the vector

BLOCK ALGEBRAIC ITERATIVE RECONSTRUCTION METHODS 7

Table 3.1
Overview of the algorithms considered with references to relevant literature. “Outer” and “In-

ner,” respectively, refer to the access of the blocks and how each block is treated. “Pinv” denotes
the use of a pseudo-inverse A+

ℓ .

Name Outer Inner Reference
ART Seq. ART ART [24], Kaczmarz [33]

Block-It Seq. SIRT [8], Block Cimmino [1], Block Iteration [17]
Seq-Pinv Seq. Pinv “Gauss-Seidel type” [14], “Generalized Kaczmarz” [13]
PART Seq. ART PART [22]
SIRT Par. SIRT Cimmino [6], CAV [9], DROP [12], Landweber [36]
SAP Par. ART String-Averaging-Projections [11]
CARP Par. ART CARP (Component-Averaged Row Projections) [23]

Par-Pinv Par. Pinv “Jacobi type” [14]

xk,2 —which, in turn, is used as input vector to the third block, an so on. Once
all p blocks have been processed, the resulting vector xk,p is then labeled as the kth
iteration vector xk. We emphasize that the projection PC introduced above can be
incorporated in the computation of each xk,ℓ for ℓ = 1, . . . , p.

The algorithm3 thus takes the following form, where the matrices T (which is
computed from A) and Mℓ ∈ Rmℓ×mℓ , ℓ = 1, . . . , p define which SIRT method is used
for each block:

Algorithm: Block-It

Initialization: choose an arbitrary x0 ∈ Rn

Iteration: for k = 0, 1, 2, . . .

xk,0 = xk−1

xk,ℓ = PC
(
xk,ℓ−1 + λT AT

ℓ Mℓ (bℓ −Aℓ x
k,ℓ−1)

)
, ℓ = 1, 2, . . . , p

xk = xk−1,p.

Using ART as the basis for handling each block is not relevant, because the overall
algorithm then becomes the standard ART method. Block-It [1], [17] was consid-
ered in several papers, e.g., [7], [48]. A special instance of this algorithm is SART [2],
which is an early example of a block-sequential method that uses a fixed partition-
ing (each block corresponds to data associated with a “projection” in parallel-beam
tomography).

An alternative to the above SIRT-based method is due to Elfving [14], who pro-
posed a block iterative method with T = I and AT

ℓ Mℓ = A+
ℓ , a pseudoinverse of Aℓ.

We refer to this particular version as Seq-Pinv, and we note that if Aℓ has full rank
then this corresponds to the choice Mℓ = (AℓA

T
ℓ)

−1 in the above algorithm. For
arbitrary rank, the pseudoinverse A+

ℓ must satisfy the two conditions AA+
ℓ A = A

and (A+
ℓ A)

T = A+
ℓ A. Given the pivoted Cholesky factorization [31]

AℓA
T
ℓ = Πℓ

(
Rℓ Sℓ

0 0

)T (
Rℓ Sℓ

0 0

)
ΠT

ℓ , R ∈ Rrℓ×rℓ , (3.2)

where Π is a permutation matrix and rℓ = rank(Aℓ), such a pseudoinverse is given by

A+
ℓ = AT

ℓ Πℓ

(
(RT

ℓ Rℓ)
−1 0

0 0

)
ΠT

ℓ . (3.3)

3While “Block-Sequential” might be a more descriptive generic name for the algorithm, we
use “Block-It” for historical reasons.

8 H. H. B. SØRENSEN AND P. C. HANSEN

The use of this pseudoinverse is feasible, e.g., when the blocks are small or when most
of the rows of Aℓ are close to structurally orthogonal leading to a very sparse (often
banded) AℓA

T
ℓ . The latter case is discussed further in Section 3.3.

We emphasize that we use the same scaling matrix T for all blocks. An alternative
is to define scaling matrices Tℓ for each block, either using the definitions from above
with Aℓ instead of A, or using ideas from [10]. It is our experience, however, that
all these variants have the same performance in practice, when used together with
a near-optimal choice of the relaxation parameter. We therefore choose to avoid the
extra computing cost and memory usage that is required for an algorithm where the
blocks are processed with different scaling matrices.

When p = 1 (only one block) then the algorithm Block-It is identical to the
particular SIRT method used on the blocks, while Seq-Pinv produces the undesired
least squares solution in one iteration. On the other hand, with the choice p = m
(i.e., each block is a single row) then— for the case where we use Cimmino’s method
on the blocks—we obtain Kaczmarz’s method.

3.2. Block-Parallel Methods. Common for these methods is that they simul-
taneously process all the blocks of A (similar to how SIRT treats the rows of A). Two
block-parallel methods are natural: either use ART-sweep on each block, or use the
pseudoinverse A+

ℓ of the block matrix as explained above. It is also possible to use
SIRT on each block, but ART is preferable because of its faster convergence, cf. the
right part of Fig. 2.2.

Consider the case where we apply an ART method to all p blocks in parallel
using the same starting vector xk−1, producing the p intermediate result xk,ℓ for
ℓ = 1, . . . , p. The next iteration vector xk is then obtained by combining these in-
termediate vectors, and different choices yield different block-parallel methods. The
algorithm4 takes the following form [11]:

Algorithm: SAP (String-Averaging-Projections)

Initialization: choose an arbitrary x0 ∈ Rn

Iteration: for k = 0, 1, 2, . . .

for ℓ = 1, . . . , p execute in parallel

xk,ℓ = ART-sweep (λ,Aℓ, bℓ, x
k−1)

xk = 1/p
∑p

ℓ=1 x
k,ℓ.

We obtain the corresponding Par-Pinv algorithm by replacing the innermost step with

xk,ℓ = PC
(
xk−1 + λA+

ℓ (bℓ −Aℓ x
k−1)

)
where A+

ℓ is the pseudoinverse from (3.2)–(3.3). If p = m (each block is a single row)
and PC is the identity then both algorithms become the Cimmino method. If p = 1
then the former algorithm becomes ART while the latter produces the least-squares
solution in one step.

Gordon and Gordon [23] introduced an alternative way to combined the interme-
diate vectors xk,1, . . . , xk,p, and referred to their version of the algorithm as CARP
(Component-Averaged Row Projections). In our framework, this corresponds to re-
placing the last step in the above SAP algorithm with

xk =
∑p

ℓ=1 D
ℓ xk,ℓ

4While “Block-Parallel” might be a more descriptive generic name for the algorithm, we use
“SAP” for historical reasons.

BLOCK ALGEBRAIC ITERATIVE RECONSTRUCTION METHODS 9

with the diagonal matrices Dℓ = diag(δℓj/νj)
n
j=1, where

δℓj =

{
1, if Aℓ(: , j) ̸= 0,
0, else,

νj =

p∑
ℓ=1

δℓj , (3.4)

and Aℓ(: , j) denotes the jth column of Aℓ. CARP reduces to the DROP algorithm
when p = m.

3.3. The Role of Structurally Orthogonal Rows. Recall that each row of A
corresponds to a single ray. In the appendix, we discuss the issue of row ordering with
a focus on a parallel-beam setup where a “projection” corresponds to data from a set
of parallel rays of a specific orientation. In particular, we consider random, multilevel
and a simple heuristic ordering of the projections.

In all remaining experiments of this paper we will use our heuristic scheme for
computing the projection ordering. We do this to have a fair comparison of all methods
and avoid the risk of an “unfortunate” random selection of rows.

The schemes described in the appendix for ordering the rows of A according to
the access of projections leaves the order of the rows belonging to each projection
unchanged. A subsequent partitioning of A into p equal-sized blocks A1, A2, . . . , Ap

then results in blocks having rows in arbitrary order from one or more projections.
In this section we discuss an alternative special partitioning of A, where the rows in
each block are carefully selected to be structurally orthogonal.

Consider the case of a block Aℓ that consists solely of structurally orthogonal
rows, i.e., the nonzero elements of each row are located such that aTi aj = 0, for all
i ̸= j. As an example with n = 10:

ai × × ×
aj × × ×

Since there is no overlap between locations of nonzeros in ai and aj , we have a
T
i x

k,i−1 =
aTi x

k,0 = aTi x
k−1 in ART-sweep. Therefore, for such a block, the simultaneous row

projections of SIRT are mathematically equivalent to performing the row projections
in any sequential order, and hence the resulting xk is identical to that of ART. In
fact, AℓA

T
ℓ is diagonal and hence SIRT is also identical to the use of A+

ℓ .
The updates in each step of ART-sweep involve different elements of the iter-

ation vector (in the above example, step i and j involve elements 2, 6, 8 and 4, 7, 10,
respectively), and therefore all updating steps can be performed in parallel. It follows
that we can implement an embarrassingly parallel ART method for such an A, in
which the required structural orthogonality is implied:

Algorithm: xk ← PART-sweep (λ,A, b, xk−1)

for i = 1, . . . ,m execute in parallel

xk = PC

(
xk−1 + λ

bi − aTi xk−1

∥ai∥22
ai

)
.

If all blocks Aℓ in a partition of A consists of structurally orthogonal rows then we
arrive at the PART algorithm [22], which is identical to Block-It in Section (3.1) if
the innermost step is replaced by

xk,ℓ = PART-sweep (λ,Aℓ, bℓ, x
k−1).

Similar ideas have also been used by Bramley and Sameh [5] for solving linear systems
of equations obtained from partial differential equations. Popa [45] introduced an

10 H. H. B. SØRENSEN AND P. C. HANSEN

algorithm for partitioning a sparse matrix so that each block contains mutually (not
necessarily structurally) orthogonal rows.

As mentioned, an iteration of this algorithm results in a iterate that is identical
to the iterate from ART-sweep. However, in contrast to ART, the algorithm also
allows for a simple and efficient parallel implementation on modern platforms, as long
as a reasonable partitioning that meets the orthogonality requirement is available.
In our 3D tomographic reconstructions, the sparsity in a row is O(n1/3) nonzeros
out of n elements. This makes structural orthogonality between the rows of A very
pronounced and allows us to obtain the required partitioning, which has sufficiently
many rows per block to be able to fully utilize the computational resources.

In order to obtain the required block partition, we apply a geometric heuristic
based on the experimental setup that sorts rays with overlapping traces into distinct
groups. This approach corresponds to the ideas in [22] for 2D reconstruction, and we
refer to this work for details.

We emphasize that the orthogonality of rows can lead to a significant reduction
in the locality of data when computing xk and therefore does not represent optimal
cache usage on a modern CPU from a computational point of view.

4. Comparison of the Block Methods. In this section we present an ex-
perimental comparison of the block methods in terms of the observed convergence
behavior and runtime measurements, for simulated 3D reconstruction problems. In
all experiments, we aim for fairness by adopting the particular relaxation parameter
λ that is optimal for each method, and which will depend on the particular geom-
etry and the number of blocks. One iteration performed by a method corresponds
to one pass through all the equations in (1.1). All the methods discussed here are
implemented to handle general setups, where the projection images are assumed to be
obtained from arbitrary directions. In all the examples PC is the orthogonal projection
on the positive orthant. Our implementations explicitly construct and use the sparse
matrix A, which is stored in main memory (in contrast to matrix-free approaches).
The sparse-storage format used for A is a variant of the sliced ELLPACK format
[38] which in our cases achieves significantly better memory bandwidth than the CSR
format.

In the performance study we will consider both single-core and multi-core per-
formance. We implemented the multi-threaded execution using OpenMP. All experi-
ments were conducted on one of two different platforms: Intel Core i7-3820 @ 3.60GHz
with 4 cores, cache sizes 32KB/256KB/10MB, and Hyper-Threading turned on, and
a 2 socket Intel Xeon CPU E5-2680 v2 @ 2.80GHz with a total of 20 cores, cache sizes
32KB/256KB/24MB, and Hyper-Threading swithed off. On the former platform we
use double precision (64-bit floating-point) in all calculations, while on the latter we
use single precision (32-bit floating-point).

4.1. Model Problems. In order to compare the convergence behavior of the
block methods, we compute the reconstruction of a known phantom object and mo-
nitor the error histories. We use a 3D version of the Shepp-Logan phantom [46],
which has been repeatedly used in the literature as a benchmark. The experimental
setup is modeled by parallel-beam sources distributed in all directions according to
the Lebedev quadrature points [43] shown in Fig. A.2. We experimented with circular
and spherical setups as well, and with cone-beam rays, but such variations do not lead
to significant changes in comparison to the results presented here.

From the phantom object and the experimental setup we are able to generate any
number of simulated projections. Specifically, three model problems are considered:

BLOCK ALGEBRAIC ITERATIVE RECONSTRUCTION METHODS 11

• a small problem of 163 voxels using 13 projections of 16× 16 pixels,
• a medium problem of 1283 voxels using 115 projections of 128× 128 pixels,
• a large problem of 2563 voxels using 133 projections of 256× 256 pixels.

When setting up the sparse linear system Ax ≃ b, the line integrals generating A are
determined after the discretization of the phantom so that the number of equations
m is equal to the total number of pixels available in the projections, and the number
of unknowns n is equal to the number of voxels. Consequently, the resulting matrices
A have dimensions 3,328 × 4,096 for the small problem, 1,884,160 × 2,097,152 for
the medium problem, and 8,716,288 × 16,777,216 for the large problem, so that all
systems are quite underdetermined. Given the exact solution x̄ (the phantom image),
the exact right-hand side b̄ = A x̄ is contaminated by additive white Gaussian noise e,
i.e., b = b̄+ e, scaled such that the relative noise level ∥e∥2/∥b̄∥2 is fixed at 0.05.

4.2. Convergence Behavior. In our first series of experiments we compared
the convergence behavior for different block partitionings for the six block meth-
ods described in Sections 3.1–3.3 using the small problem. We partitioned A into
p = 1, 2, 4, . . . , 64 equal-sized blocks and we used algorithm ORP to determined the
optimal fixed relaxation parameter λ for a target relative error ηtarget = 0.15 for all
six methods. Figure 4.1 shows the corresponding error histories for 50 iterations using
the optimal λ values. The convergence behavior of the basic methods SIRT and ART
can be identified as the Block-It and SAP histories, respectively, for p = 1. The
curve for Block-It using p = 13 (i.e., one block per projection) corresponds to the
SART method of Anderson and Kak [2].

We see that the Block-It method quickly approaches the ART convergence
behavior as p is increased; it becomes indistinguishable from ART for p = 8. The
reason for this fast improvement is that the rows within each block quickly become
structurally orthogonal when the blocks are reduced in size (as mentioned earlier this
turns SIRT into ART). For the same reason, SAP approaches the SIRT convergence
behavior as p increases, but here the break-even point is at p = 16. The SAP and
CARP algorithms have almost identical convergence behavior for p smaller than the
number of projections. This is because all elements of xk are updated when treating
an individual block. For large p, however, many elements of xk are left unchanged
when treating a block, in which case the CARP combination of the intermediate
results xk,1, . . . , xk,p prevails as the better choice.

Another observation is that the use of the pseudoinverse in the block methods
significantly alters the convergence behavior. For less than 4 blocks, the Seq-Pinv
method does not reach the semi-convergence solution but converges directly to the
unwanted noisy solution. For more than 4 blocks, it converges as fast as ART and
has the same optimal relaxation parameter as ART. Similarly, in the case of the
Par-Pinv method we see that the target relative error is not reached in 50 iterations
for less than 8 blocks; for 8 and more blocks the convergence is slow compared to the
other results. We conclude that for the 3D reconstruction problems considered here,
the pseudoinverse block methods are not competitive with the other block methods,
at least from a purely performance and memory usage perspective.

Finally we see that the PART method exhibits identical convergence behavior
for all block partitionings; this is also true in the next series of experiments and we
postpone the explanation to the discussion of those results below.

To validate the observed convergence of the block methods for larger problems,
we performed a similar series of experiments for the large test problem with a target
relative error set to 5% above the global minimum, see Table 4.1 for details. We

12 H. H. B. SØRENSEN AND P. C. HANSEN

Iteration k

R
e
la

t
iv

e
e
r
r
o
r

Block-It

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
p = 1, λ = 0.21

p = 2, λ = 0.42

p = 4, λ = 0.82

p = 8, λ = 1.56

p = 16, λ = 1.56

p = 32, λ = 1.56

p = 64, λ = 1.56

p = 13, λ = 1.56

Iteration k

R
e
la

t
iv

e
e
r
r
o
r

SAP

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
p = 1, λ = 1.56

p = 2, λ = 2.27

p = 4, λ = 2.32

p = 8, λ = 4.21

p = 16, λ = 3.98

p = 32, λ = 8.28

p = 64, λ = 10.00

p = 13, λ = 2.83

Iteration k

R
e
la

t
iv

e
e
r
r
o
r

Seq-Pinv

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
p = 1, λ = 0.26

p = 2, λ = 0.24

p = 4, λ = 1.57

p = 8, λ = 1.56

p = 16, λ = 1.56

p = 32, λ = 1.56

p = 64, λ = 1.56

p = 13, λ = 1.56

Iteration k

R
e
la

t
iv

e
e
r
r
o
r

Par-Pinv

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
p = 1, λ = 0.26

p = 2, λ = 3.06

p = 4, λ = 1.14

p = 8, λ = 1.15

p = 16, λ = 1.17

p = 32, λ = 1.18

p = 64, λ = 1.18

p = 13, λ = 1.27

Iteration k

R
e
la

t
iv

e
e
r
r
o
r

PART

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
p = 1, λ = 1.56

p = 2, λ = 1.56

p = 4, λ = 1.56

p = 8, λ = 1.56

p = 16, λ = 1.56

p = 32, λ = 1.56

p = 64, λ = 1.56

p = 13, λ = 1.56

Iteration k

R
e
la

t
iv

e
e
r
r
o
r

CARP

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
p = 1, λ = 1.56

p = 2, λ = 2.27

p = 4, λ = 2.32

p = 8, λ = 4.15

p = 16, λ = 2.82

p = 32, λ = 2.73

p = 64, λ = 2.79

p = 13, λ = 2.59

Fig. 4.1. Error histories of the different block methods for the small problem calculated using
4 threads. The legends indicate the number of blocks p and the value of the corresponding optimal
relaxation parameter λ. Note that some of the curves are indistinguishable from each other.

Table 4.1
Results for the large problem: the smallest relative error ηmin in the first step of Alg. ORP

from Sec. 2.3. We use these values to set the overall target error to ηtarget = 1.05 · 0.196 = 0.206,
i.e., 5% above the global minimum, when comparing the different methods. The combinations of
methods and block sizes that do not reach this ηtarget in 50 iterations are not taken into account.

Blocks p 1 2 4 8 16 32 64 133 256 532
Block-It 0.201 0.203 0.204 0.205 0.201 0.200 0.200 0.200 0.200 0.200

SAP 0.200 0.199 0.199 0.197 0.197 0.198 0.199 0.206 0.213 0.258
CARP 0.201 0.201 0.197 0.196 0.198 0.198 0.199 0.207 0.213 0.218
PART 0.200 0.200 0.199 0.200 0.200 0.200 0.200 0.199 0.199 0.199

BLOCK ALGEBRAIC ITERATIVE RECONSTRUCTION METHODS 13

Iteration k

R
e
la

t
iv

e
e
r
r
o
r

Block-It

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
p = 1, λ = 0.02

p = 2, λ = 0.03

p = 4, λ = 0.06

p = 8, λ = 0.13

p = 16, λ = 0.27

p = 32, λ = 0.45

p = 64, λ = 0.60

p = 133, λ = 0.59

Iteration k

R
e
la

t
iv

e
e
r
r
o
r

SAP

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
p = 1, λ = 0.59

p = 2, λ = 0.79

p = 4, λ = 1.22

p = 8, λ = 1.73

p = 16, λ = 1.90

p = 32, λ = 2.39

p = 64, λ = 2.74

p = 133, λ = 2.90

Iteration k

R
e
la

t
iv

e
e
r
r
o
r

PART

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
p = 1, λ = 0.48

p = 2, λ = 0.47

p = 4, λ = 0.48

p = 8, λ = 0.50

p = 16, λ = 0.51

p = 32, λ = 0.52

p = 64, λ = 0.53

p = 133, λ = 0.59

Iteration k

R
e
la

t
iv

e
e
r
r
o
r

CARP

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
p = 1, λ = 0.59

p = 2, λ = 0.79

p = 4, λ = 1.22

p = 8, λ = 1.72

p = 16, λ = 2.08

p = 32, λ = 2.44

p = 64, λ = 2.90

p = 133, λ = 2.63

Fig. 4.2. Error histories of the different block methods for the large problem calculated using
64 threads. The legends indicate the number of blocks p and the value of the corresponding optimal
relaxation parameter λ. Note that some of the curves are indistinguishable from each other.

consider only those block methods that do not involve a pseudoinverse. Figure 4.2
shows the error histories, from which we see that the general convergence trends are
consistent with the previous observations. The main differences compared to the small
problem are that:

1. Less iterations are required for ART to reach the target error.
2. More iterations are required for SIRT to reach the target error.
3. More blocks are required for Block-It before its convergence behavior is

indistinguishable from that of ART.

We also note that, in general, lower values of the optimal fixed relaxation parameter
are obtained.

PART exhibits almost identical convergence behavior for all block partitionings.
This is quite remarkable since the rows in the blocks are not strictly structurally
orthogonal (although almost so for p = 133 blocks). The reason for the identical
convergence is that the matrix A is extremely sparse for the problem considered;
there is on average only nnz/m ≈ 302 nonzeros for each row of n = 2563 = 16,777,216
elements. At the same time the computation is divided between 64 independent
threads, which are assigned chunk sizes of 200 consecutive rows in a static manner.
This significantly reduces the risk of threads working on the same columns at the
same time. However, we stress that the method is not equivalent to ART (and neither
deterministic nor robust) for other than p = 532 blocks which, for this example, is
the number of blocks required to have structurally orthogonal rows in all blocks.

14 H. H. B. SØRENSEN AND P. C. HANSEN

Single-core performance / Intel Core i7 CPU

Number of blocks

T
im

e
p

e
r

it
e
ra

ti
o
n

1 100 200 300 400 500
0

2

4

6

8

10
Block-It
SAP
CARP
PART
ART

Number of blocks

T
o
t
a
l

t
im

e

1 10 100
0

5

10

15

20

Fig. 4.3. Computing time per iteration and total reconstruction time in seconds for the medium
problem as a function of the number of blocks. All methods use the optimal λ and ηtarget set at 5%
above the global minimum of all methods. The optimal number of blocks for each method is indicated
by circles. In the case of PART the required minimum number of blocks p = 460 is indicated as a
square. All timings are for a single thread.

4.3. Single-Core Performance. Figure 4.3 shows timing results for single-
core computations using the medium test problem. The left figure shows the time per
iteration as a function of the number of blocks for the different block methods.

For reference we also show the results for a block sequential implementation of
ART, from here on denoted by “ART (1 thread),” where the single-block case is
the implementation commonly associated with ART. The reason for this is that the
underlying sliced ELLPACK sparse storage of the matrix A introduces zero-padding
in order to eliminate row pointers, which in turn increases the data throughput but
reduces the cache efficiency due to padded bytes. This means that even the sequential
ART method, rather than working on only one block, might improve from using a
block partitioning (slices in the storage format), because the zero-padding per block
can be reduced this way with little overhead in the algorithm.

We see from the left figure that there is considerable overhead associated with
partitioning into blocks when p is large, in particular for the CARP algorithm. The
SAP algorithm performs much better for increasing number of blocks. We also observe
that Block-It has longer time per iteration than SAP for the same number of blocks.

The main influence on these results is the cache utilization achieved in the different
algorithms. The algorithms that apply ART in each block have significantly better
cache utilization than than those based on SIRT because of the data locality of the
row ai, which is accessed twice in each iteration, and its consecutive row ai+1, which is
always accessed next. For SIRT every row is accessed only once in the multiplication
by A, followed by a separate access of every row in the multiplication by AT , at which
time the cache lines from the first access are most likely flushed. In practice, this
produces the difference between the slopes of the curves for Block-It and PART.

The right part of Fig. 4.3 shows the total reconstruction time as a function of
the number of blocks, for which the minimum of each curve is marked by a circle
(and p = 460 for PART) in order to indicate the fastest possible reconstructions for
each method. We see that the methods typically have a specific number of blocks
that provide the optimal partitioning in terms of reconstruction time for a particular
problem. Table 4.2 on p. 16 gives a quick visual comparison of the reconstructed
images obtained by the different methods using a single core, along with information
about the performance of the algorithms. All the reconstructions are computed for a

BLOCK ALGEBRAIC ITERATIVE RECONSTRUCTION METHODS 15

Multi-core performance / Intel Core i7 CPU / 4 cores

Threads

T
im

e
p
e
r
it
e
r
a
t
io
n

1 block

1 2 4 8 16 32 64
0

1

2

3

4

Threads

T
im

e
p
e
r
it
e
r
a
t
io
n

16 blocks

1 2 4 8 16 32 64
0

1

2

3

4

Threads

T
im

e
p
e
r
it
e
r
a
t
io
n

115 blocks

1 2 4 8 16 32 64
0

1

2

3

4

Threads

T
im

e
p
e
r
it
e
r
a
t
io
n

460 blocks

1 2 4 8 16 32 64
0

1

2

3

4

Block-It
SAP
CARP
PART
ART (1 thread)

Number of blocks

T
o
t
a
l

t
im

e
1 10 100

0

2

4

6

8

10

Multi-core performance / Intel Xeon CPU E5-2680 v2 / 20 cores

Threads

T
im

e
p
e
r
it
e
r
a
t
io
n

1 block

1 2 4 8 16 32 64
0

10

20

30

Threads

T
im

e
p
e
r
it
e
r
a
t
io
n

16 blocks

1 2 4 8 16 32 64
0

10

20

30

Threads

T
im

e
p
e
r
it
e
r
a
t
io
n

133 blocks

1 2 4 8 16 32 64
0

10

20

30

Threads

T
im

e
p
e
r
it
e
r
a
t
io
n

532 blocks

1 2 4 8 16 32 64
0

10

20

30

Block-It
SAP
CARP
PART
ART (1 thread)

Number of blocks

T
o
t
a
l
t
i
m
e

1 10 100
0

10

20

30

40

Fig. 4.4. Right parts are the same as in Fig. 4.3 but for multi-core platforms. Top left: the time
per iteration as a function of threads for the medium problem using partitionings of p =1, 16, 115,
and 460 blocks. Bottom left: similar to the top left but for the large problem using partitionings
of p =1, 16, 133, and 532 blocks. We use 4 and 20 cores; all timings of the total time are for 64
threads except ART which uses one thread.

target relative error set to 5% above the global minimum and no distinct difference is
observed. On the basis of the presented results, we conclude that the fastest methods
in a single-core setting—due to superior cache usage—are ART and SAP.

4.4. Multi-Core Performance. We now study the performance of the block
methods by considering the medium and large test problems on multi-core platforms.
The top left half of Fig. 4.4 shows the time per iteration as a function of the number
of threads for the medium problem, for partitionings into 1, 16, 115, and 460 blocks,

16 H. H. B. SØRENSEN AND P. C. HANSEN

Table 4.2
The central slice of the 3D Shepp-Logan phantom (leftmost images) and the corresponding

reconstructions produced by the different block methods and ART. The top and middle parts show
results for the medium problem using 1 and 4 cores, respectively, on the Intel Core i7 CPU. The
bottom part shows results for the large problem computed on the Intel Xeon CPU E5-2680 v2 using
20 cores. We also list the number of blocks, the number of iterations, and the total reconstruction
time for the fastest reconstruction of each method using the optimal fixed relaxation parameter.

Single-core / medium problem

Method Block-It SAP CARP PART ART
Blocks 64 2 2 460 8

Iterations 2 2 2 2 2
Time (s) 6.41 3.92 5.20 6.25 3.92

Multi-core: 4 cores / medium problem

Method Block-It SAP CARP PART ART
Blocks 64 4 4 460 8

Iterations 2 3 3 2 2
Time (s) 2.54 1.89 2.19 1.90 3.92

Multi-core: 20 cores / large problem

Method Block-It SAP CARP PART ART
Blocks 64 8 8 532 133

Iterations 2 6 6 2 2
Time (s) 11.84 20.14 20.75 6.58 34.54

running on an Intel Core i7 CPU with 4 cores. In most cases the time per iteration
is reduced by a factor of about 3 by using four or more threads compared to using
only one in the multi-threaded implementations. The reason that we do not see
better scaling (i.e., a factor of 4) is a combination of mainly three issues; the overhead
from the block partitioning (cf. Fig. 4.3), the overhead from the forking, joining and
scheduling of the threads with OpenMP, and the less optimal cache usage (all threads
share the same L3 cache while working on different parts of the A matrix).

The top right half of Fig. 4.4 shows the total reconstruction times for the medium
problem as a function of the number of blocks. Again we observe an optimal number
of blocks for each of the different block methods.

With the exception of ART and PART, the performance of each method is very
sensitive to the choice of the number of blocks. As we move away from the opti-
mal number of blocks, the timings deteriorate rapidly. This means that on different
problems and/or different number of cores, the number of blocks would have to be
fine-tuned for each case in order to obtain the best results. On the other hand, ART
and PART are very stable in this respect and no such tuning is required.

BLOCK ALGEBRAIC ITERATIVE RECONSTRUCTION METHODS 17

The key results are summarized in Table 4.2 along with a visualization of the
reconstructed objects; there is no significant difference in the obtained images. We
see that in a multi-core setting with 4 cores the fastest reconstruction time is achieved
by SAP in the case where it uses p = 4 blocks and three iterations to reach the target
relative error. As a close runner-up we have the PART using the required p = 460
blocks and only two iterations. Tests for other problem sizes on the 4-core platform
show that the observed ranking of the methods is consistent.

In our final series of experiments, we repeat the computations on a 2 socket Intel
Xeon CPU E5-2680 v2 platform with 20 cores. The results are shown in the bottom
half of Fig. 4.4 and also summarized in the bottom part of Table 4.2. The left figures
show that using 64 threads reduces the time per iteration by a factor of 5–10 for the
multi-threaded implementations of the block methods compared to using 1 thread.
The reduction depends on the particular method and the number of blocks used in
the partition. In particular the PART algorithm scales well for more threads even for
partitionings with many blocks.

From the reconstruction times presented in the right half of Fig. 4.4 we observe
a different performance trend for the block methods on a multi-core machine with
20 cores instead of 4 cores. We see that the block-parallel methods perform notably
worse in comparison to the other methods on a 20-core platform. We explain this by
the unavoidable trade-off in these methods between having fast time per iteration,
which requires up to 20 blocks for parallel execution, and having fast convergence,
which requires a partition of much fewer blocks (cf. Fig. 4.2).

The bock-sequential Block-It method performs better than the block-parallel
methods on 20 cores but suffers from bad cache utilization as already pointed out.
The PART method has the fastest reconstruction time with a distinct improvement
around 100 blocks, which indicates a shift from 3 to 2 necessary iterations as the rows
in each block gets closer to satisfying structural orthogonality. We conclude that for
our test problems the PART algorithm is best suited for the level of multi-threading
required by a high number of computing cores.

Comparing the execution times to other works is difficult since most authors use
a circular setup for sliced 3D reconstructions (e.g., fixed tilt-angle geometries). Sliced
approaches are significantly cheaper in terms of computational work and memory
usage due to symmetries in the setup. However, a recent GPU-based study [25] of 3D
reconstruction from arbitrarily aligned projections with artifact reduction reports a
time per iteration of 4.0 s for a problem of 1283 voxels using 50 projections of 256×256
pixels in single precision. Comparing with our medium problem (1283 voxels using
115 projections of 128×128 pixels in double precision) we see that our multi-core CPU
implementation of the PART algorithm achieves times per iteration very similar to
the GPU implementation presented in [25].

5. Conclusion. We describe the central aspects of implementing block alge-
braic iterative reconstruction methods for tomographic imaging problems on multi-
core platforms. Our implementations suit arbitrary imaging geometries in which the
projection images can be obtained from any direction and the matrix describing the
geometry is explicitly constructed or read from disk and stored in memory. We present
a framework for block-sequential and block-parallel methods, and the most promising
algorithms are carefully implemented for good performance. In order to make a fair
comparison between the different methods we use a training procedure to obtain the
optimal fixed relaxation parameter for a particular method, using a model problem.
We compare the performance of the block methods to ART in a number of numerical

18 H. H. B. SØRENSEN AND P. C. HANSEN

Table 5.1
Summary of the most efficient implementations on different computer platforms for the under-

determined model problems considered in this work.

Platform Most efficient implementations
Single-core CPU ART and SAP
Multi-core CPU: 4 cores SAP and PART
Multi-core CPU: 20 cores PART (or Block-It)

experiments in both single-core and multi-core settings.
Our work focuses on 3D parallel-beam tomographic reconstruction; however, other

results for cone-beam setups (not reported here) confirm our observations. Our nu-
merical results support the common observation that ART has the fastest convergence
during the semi-convergence phase. In addition, we show that the fast convergence
can also be achieved in both block-sequential and block-parallel methods if the num-
ber of blocks is chosen properly. At the same time the level of parallelism introduced
in the block methods is sufficient for multi-core platforms. We also demonstrate that
the cache utilization of an actual implementation of ART is significantly better than
that of an implementation of SIRT. We conclude that ART is the best choice for
single-core execution and the best choice to use in a block method on the individual
blocks.

Table 5.1 summarizes our main results for single- and multi-core platforms. For
single-core and few-core execution the block-parallel methods are the fastest. As
the number of cores increases, the block-sequential methods perform better and, in
particular, the PART algorithm—which can utilize structurally orthogonal rows—
is well suited for current high-end and future multi-core platforms. If structural
orthogonality cannot be utilized then Block-It is preferable.

We note that the main results in Table 5.1 are obtained for model problems that
produce underdetermined systems; for other problems the most efficient approach can
be different from the ones we found. For example, as illustrated in a recent study
by Karonis et al. [34], the CARP method has shown great applicability in large-
scale settings if the number of equations is significantly larger (up to two orders of
magnitude) than the number of voxels, because then the overhead from combining
the current solutions of all threads after each iteration is significantly less costly.

Acknowledgements. We thank Tommy Elving and the two referees for many
valuable comments and suggestions that helped to improve the presentation.

Appendix A. Row Orderings.
The particular form of the matrix A depends on the geometry of the underlying

tomography problem. The ordering of its rows corresponds to the order in which the
rays are organized. We say that the natural ordering of the rows arises from treating
rays according the position of the pixels in the projections, one projection after the
other. Several investigations [26], [30], [39] demonstrate that the row ordering has a
strong effect on the practical performance of algebraic reconstruction techniques, in
particular when the angles that define the projections cover an (almost) full range.
In that respect, the natural ordering is rarely optimal for the algebraic reconstruction
methods that are the focus in this work.

The convergence of ART is fast when the rows of A are close to orthogonal [26],
as reflected in the fact that the smaller the condition number of A, the faster the
convergence, cf. (2.1). Figure A.1 gives a geometric illustration of this point for

BLOCK ALGEBRAIC ITERATIVE RECONSTRUCTION METHODS 19

a) b)

ART

SIRT

c)

Fig. A.1. Convergence of ART and SIRT for an example with m = n = 2, where the corre-
sponding hyperplanes/lines are a) far from orthogonal, b) close to orthogonal, and c) orthogonal.

Circular Spherical Lebedev

Fig. A.2. Three different setups for parallel-beam 3D tomography, showing 25 points on the unit
sphere that define the directions of the parallel rays. Left: the sources are equidistantly distributed
on a half-circle (suited only for computing slices of a 3D reconstruction). Middle: the sources are
distributed equidistantly in latitude and longitude on the top half of the sphere. Right: the sources are
distributed according to Lebedev quadrature points that give an approximately uniform distribution
on the sphere.

m = n = 2 (i.e., two equations), where the solution is the intersection of two lines
in the plane. We show three cases, where the lines are far from orthogonal, close to
orthogonal, and orthogonal, respectively. In the first case each iteration approaches
the intersection slowly since the directions of the steps are close to parallel. The third
case is clearly optimal since the second step is orthogonal to the first, and the solution
is found in one iteration.

In general, each of the m linear equations represents a hyperplane and for a
consistent system the solution x∗ is a point on the intersection of the hyperplanes.
The convergence of ART is fast if consecutive rows represent hyperplanes that are
almost orthogonal to the space spanned by the previous rows. Therefore, for ART we
could reorder the rows such that for all i = 1, . . . ,m−1 row ai is chosen to be the row
among ai+1, . . . , am that has the largest angle to span{a1, . . . , ai−1}. This is possible
as long as rank(A) ≥ m. However, this “greedy algorithm” leads to a combinatorial
problem that is costly and not feasible to perform in practice except for very small
matrices.

A more practical approach is to adopt the natural ordering for the rays belonging
to the individual projections and only consider the order in which the projections are
accessed. As reported elsewhere (see [30] and references therein), and confirmed by
our testing, it has little effect to reorder rays within projections. The goal is therefore
to arrange the projections in an order where the information in the next projection is
as independent of the previously accessed projections as possible. The most common
access order schemes proposed so far for 2D reconstructions are the multi-level scheme
[26], the prime number decomposition [30], the Golden Section scheme [35], and the
weighted distance scheme [39].

20 H. H. B. SØRENSEN AND P. C. HANSEN

Figure A.2 shows three setups for 3D parallel-beam tomographic reconstruction.
The directions of the parallel rays are indicated by P points on the unit sphere that
represent the unit vectors p̂i, i = 1, . . . , P . The projection images, one for each
direction, are recorded on flat square detectors oriented perpendicular to the ray.
The circular and spherical distributions are enumerable in a systematic manner in
terms of equidistant angles while the Lebedev distribution,5 by construction, is not.

In this work, we employ a simple heuristic to determine the ordering of the projec-
tions, which in practice is as effective as the schemes mentioned above. Our heuristic
scheme has the advantage that it does not require a systematic positioning of the
sources or an initial enumeration of the projections. First we set I = {1, 2, . . . , P}
and evaluate the sum p̄I =

∑
i∈I p̂i, and then we select the particular projection

whose direction vector has the largest angular distance to p̄I , i.e., the selected projec-
tion number j minimizes p̄TI p̂j for j ∈ I. At this stage the set of selected projections
is V = {j}.

Subsequent projection numbers are then chosen by maintaining and updating the
set of selected projections V with V = |V| elements, together with the set of candidate
projections U = I \V with U = |U| elements. Each step has the following heuristic
form:

1. Calculate the angular distances cu,v = |p̂Tu p̂v| between every candidate pro-
jection p̂u, u ∈ U and all previously selected projections p̂v, v ∈ V.

2. Sort the angular distances belonging to the individual candidates in descend-
ing order so that cu,v ≥ cu,v+1 for u = 1, . . . , U and v = 1, . . . , V − 1.

3. For k = 1, 2, . . . , V
(a) Update the set of candidates to those projections that have the largest

angular distance to the closest previously selected projection, i.e., U =
{1 ≤ u ≤ U | cu,k = minν cν,k}.

(b) If |U| = 1 then break.
4. If |U| = 1 then select the projection as the single remaining candidate in
U . Otherwise, select a projection from U in the same manner as the initial
projection, i.e., the one that minimizes p̂Tj

∑
i∈U p̂i for j ∈ U . Purge the

selected row number from V.
This procedure is repeated until all rows have been treated, i.e., V = 0. The algorithm
is specifically designed to handle the case m > n, but it also works for m ≤ n.

Figure A.3 illustrates the effect of different projection orderings when using the
ART method with an optimal λ for 3D reconstructions. The curves show the error
histories for the natural ordering, the average of 100 random orderings, the multi-level
scheme of Guan and Gordon [26], and our heuristic scheme. The three graphs show
results corresponding to the three different ray distributions in Fig. A.2. In the circular
and spherical setups, which exhibit systematic positioning of the sources, we see that
the natural ordering represents the worst case; this is because the rows associated with
the natural ordering of the projections resemble each other structurally. We also see
that only a small increase in convergence rate is achieved, compared to the random
ordering, by using the other ordering schemes. Using the Lebedev distribution of the
rays, we reach the smallest error and the curves for random ordering and any ordering
scheme become indistinguishable.

We conclude that none of the proposed schemes for ordering of the projections
have significant advantage over a random ordering, and their performance becomes

5The Lebedev distribution [37] does not reflect a specific measurement geometry (to our knowl-
edge); it is an artificial distribution that represent rays which are well distributed over all angles.

BLOCK ALGEBRAIC ITERATIVE RECONSTRUCTION METHODS 21

Iteration k

R
e
la

t
iv

e
e
r
r
o
r

Cicular

0 5 100

0.2

0.4

0.6

0.8

1
Natural order
Random mean
Random spread
Multilevel order
Heuristic order

Iteration k

R
e
la

t
iv

e
e
r
r
o
r

Spherical

0 5 100

0.2

0.4

0.6

0.8

1
Natural order
Random mean
Random spread
Multilevel order
Heuristic order

Iteration k

R
e
la

t
iv

e
e
r
r
o
r

Lebedev

0 5 100

0.2

0.4

0.6

0.8

1
Natural order
Random mean
Random spread
Multilevel order
Heuristic order

Fig. A.3. Typical effect of the projection ordering for the ART method. The blue line shows
the mean of 100 random orderings and the shaded area indicates the spread. The red line is the
result without reordering (natural order). From left to right, three cases are shown corresponding
to circular, spherical, and Lebedev distribution of rays, cf. Fig. A.2. The reconstructions have 323

voxels and P = 25 projections of size 322 pixels. In all cases we use the optimal relaxation parameter.

practically identical as the number of projections increases. We have illustrated this
for parallel rays, but our experiments show a similar behavior for the case of cone-
beams where the rays associated with each projection originate from a single point.

REFERENCES

[1] R. Aharoni and Y. Censor, Block-iterative projection methods for parallel computation of
solutions to convex feasibility problems, Lin. Alg. Appl., 120 (1989), pp. 165–175.

[2] A.H. Andersen and A.C. Kak, Simultaneous Algebraic Reconstruction Technique (SART): A
superior implementation of the ART algorithm, Ultrasonic Imaging, 6 (1984), pp. 81–94.

[3] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging, Institute of
Physics Publishing, Bristol, 1998.

[4] M. Bertero, D. Bindi, P. Boccacci, M. Cattaneo, C. Eva, and V. Lanza, Application of
the projected Landweber method to the estimation of the source time function in seismology,
Inverse Problems, 13 (1997), pp. 465–486.

[5] R. Bramley and A. Sameh, Domain decomposition for parallel row projection algorithms,
Applied Numerical Mathematics, 8 (1991), pp. 303–315.

[6] G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, La Ric.
Sci., XVI, Ser. II, Anno IX, 1 (1938), pp. 326–333.

[7] Y. Censor, Parallel application of block-iterative methods in medical imaging and radiation
therapy, Mathematical Programming, 42 (1988), pp. 307–325. 10.1007/BF01589408.

[8] Y. Censor, D. Gordon, and R. Gordon, BICAV: An inherently parallel algorithm or sparse
systems with pixel-related weighting, IEEE Trans. Medical Imaging, 20 (2001), pp. 1050–
1060.

[9] Y. Censor, D. Gordon, and R. Gordon, Component averaging: An efficient iterative paral-
lel algorithm for large and sparse unstructured problems, Parallel Computing, 27 (2001),
pp. 777–808.

[10] Y. Censor and T. Elfving, Block-iterative algorithms with diagonally scaled oblique projec-
tions for the linear feasibility problem, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 40–58.

[11] Y. Censor, T. Elfving, and G. T. Herman, Averaging strings of sequential iterations for con-
vex feasibility problems; in D. Butnariu, Y. Censor, and S. Reich (Eds), Inherently Parallel
Algorithms in Feasibility and Optimization and Their Applications, Elsevier, Amsterdam,
The Netherlands, pp. 101–114, 2001.

[12] Y. Censor, T. Elfving, G. T. Herman, and T. Nikazad, On diagonally relaxed orthogonal
projection methods, SIAM J. Sci. Comput., 30 (2008), pp. 473–504.

[13] P. P. B. Eggermont, G. T. Herman, and A. Lent, Iterative algorithms for large parti-
tioned linear systems, with applications to image reconstruction, Lin. Alg. Appl., 40 (1981),
pp. 37–67.

[14] T. Elfving, Block-iterative methods for consistent and inconsistent linear equations, Numer.
Math., 35 (1980), pp. 1–12. 10.1007/BF01396365.

[15] T. Elfving, P. C. Hansen, and T. Nikazad, Semi-convergence and relaxation parameters
for projected SIRT algorithms, SIAM J. Sci. Comput., 34 (2012), pp. A2000–A2017, DOI:
10.1137/110834640.

22 H. H. B. SØRENSEN AND P. C. HANSEN

[16] T. Elfving, P. C. Hansen, and T. Nikazad, Semi-convergence properties of Kaczmarz’s
method, Inverse Problems, 30 (2014), DOI: 10.1088/0266-5611/30/5/055007.

[17] T. Elfving and T. Nikazad, Properties of a class of block-iterative methods, Inverse Problems,
25 (2009), 115011, DOI: 10.1088/0266-5611/25/11/115011.

[18] T. Elfving, T. Nikazad, and P. C. Hansen, Semi-convergence and relaxation parameters for
a class of SIRT algorithms, Electronic Trans. on Numer. Anal., 37 (2010), pp. 321–336.

[19] T. Elfving, T. Nikazad, and C. Popa, A class of iterative methods: semi-convergence, stop-
ping rules, inconsistency, and constraining, in: Y. Censor, M. Jiang, and G. Wang (Eds.),
Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning, and In-
verse Problems, Medical Physics Publishing, Madison, WI, 2010.

[20] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer,
Dordrecht, The Netherlands, 1996.

[21] P. Gilbert, Iterative methods for the three-dimensional reconstruction of an object from pro-
jections, J. Theoretical Biology, 36 (1972), pp. 105–117.

[22] D. Gordon, Parallel ART for image reconstruction in CT using processor arrays, Int. J.
Parallel, Emergent and Distrib. Syst., 21 (2006), pp. 365–380.

[23] D. Gordon and R. Gordon, Component-averaged row projections: A robust, block-parallel
scheme for sparse linear systems, SIAM J. Sci. Comput., 27 (2005), pp. 1092–1117.

[24] R. Gordon, R. Bender, G. T. Herman, Algebraic reconstruction techniques (ART) for three-
dimensional electron microscopy and X-ray photography, J. Theoretical Biology, 29 (1970),
pp. 477–481.

[25] D. Gross, U. Heil, R. Schulze, E. Schoemer, and U. Schwanecke, GPU-based volume
reconstruction from very few arbitrarily aligned x-ray images, SIAM J. Sci. Comput., 31
(2009), pp. 4204–4221.

[26] H. Guan and R. Gordon, A projection access order for speedy convergence of ART (alge-
braic reconstruction technique): a multilevel scheme for computed tomography, Physics in
Medicine and Biology, 39 (2001), pp. 2005–2022.

[27] P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, SIAM, Philadelphia, 2010.
[28] P. C. Hansen and M. Saxild-Hansen, AIR Tools –A MATLAB package of algebraic iter-

ative reconstruction methods, J. Comp. Appl. Math., 236 (2011), pp. 2167–2178, DOI:
10.1007/s10543-011-0359-8.

[29] G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Pro-
jections, 2. Ed., Springer, New York, USA, 2009.

[30] G. T. Herman and L. B. Meyer, Algebraic reconstruction techniques can be made computa-
tionally efficient, IEEE Trans. Medical Imaging, 12 (1993), pp. 600–609.

[31] N. J. Higham, Analysis of the Cholesky decomposition of a semi-definite matrix, in: Reliable
Numerical Computation, eds. M.G. Cox and S. Hammarling (Clarendon Press, Oxford,
1990) pp. 161–185.

[32] M. Jiang and G. Wang, Convergence studies on iterative algorithms for image reconstruction,
IEEE Trans. Medical Imaging, 22 (2003), pp. 569–579.

[33] S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bull. Acad. Pol.
Sci. Lett., A35 (1937), pp. 355–357.

[34] N. T. Karonis, K. L. Duffin, C. E. Ordoñez, B. Erdelyi, T. D. Uram, E. C. Olson,
G. Coutrakon, M. E. Papka, Distributed and hardware accelerated computing for clin-
ical medical imaging using proton computed tomography (pCT), Journal of Parallel and
Distributed Computing, 73 (2013), pp. 1605–1612.

[35] T. Köhler, A projection access schme for iterative reconstruction based on the golden section,
IEEE Nuclear Science Symposium Conference Record, 6 (2004), pp. 3961–3965.

[36] L. Landweber, An iteration formula for Fredholm integral of the first kind, Amer. J. Math.
73 (1951), p. 615–624.

[37] V. I. Lebedev, Quadratures on a sphere, USSR Computational Mathematics and Mathematical
Physics, 16 (1976), pp. 10–24.

[38] A. Monakov, A. Lokhmotov, and A. Avestisyan, Automatically tuning sparse matrix-vector
multiplication for GPU Architectures; in Y. N. Patt et al. (Eds.), High Performance Em-
bedded Architectures and Compilers, Lecture Notes in Computer Science, 5952 (2010), pp.
111–125.

[39] K. Mueller, R. Yagel, and J. F. Cornhill, The weighted-distance scheme: a globally opti-
mizing projection ordering method for ART, IEEE Trans. Medical Imaging, 16 (1997), pp.
223–230.

[40] F. Natterer, The Mathematics of Computerized Tomography, SIAM, Philadelphia, 2001.
[41] D. Needell and J. A. Tropp, Paved with good intentions: Analysis of a randomized

block Kaczmarc method, Lin. Alg. Appl., 441 (2014), pp. 199–221. DOI: 10.1016/

BLOCK ALGEBRAIC ITERATIVE RECONSTRUCTION METHODS 23

j.laa.2012.12.022.
[42] Yu. Nesterov, Introductory Lectures on Convex Optimization, Kluwer Academic, Dordrecht,

The Netherlands, 2004.
[43] R. Parrish, getLebedevSphere, Matlab file. www.mathworks.com/matlabcentral/fileexchange/

27097-getlebedevsphere (2010).
[44] S. N. Penfold, R. W. Schulte, Y. Censor, V. Bashkirov, S. McAllister, K. E. Schu-

bert, and A. B. Rosenfeld, Block-iterative and string-averaging projection algorithms in
photon computed tomography image reconstruction, in: Y. Censor, M. Jiang, and G. Wang
(Eds.), Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning, and
Inverse Problems, Medical Physics Publishing, Madison, WI, 2010.

[45] C. Popa, Block-projections algorithms with blocks containing mutually orthogonal rows and
columns, BIT Numerical Mathematics, 9 (1999), pp. 323–338.

[46] M. Schabel, 3D Shepp-Logan phantom, Matlab file. www.mathworks.com/matlabcentral/

fileexchange/9416-3d-shepp-logan-phantom (2006).
[47] T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm for linear systems with

exponential convergence, J. Fourier Anal. Appl., 15 (2009) 262–278.
[48] M. C. A. Van Dijke, H. A. van der Vorst, and M. A. Viergever, On the relation between

ART, block-ART and SIRT; in A. E. Todd-Pokropek and M. A. Viergever (Eds.), Medical
Images: Formation, Handling and Evaluation, NATO ASI Series F, Computer and Systems
Sciences, 98 (1992), pp. 377–396.

[49] A. van der Sluis, H. A. van der Vorst, SIRT- and CG-type methods for the iterative solution
of sparse linear least-squares problems, Lin. Alg. Appl., 130 (1990), pp. 257–302.

[50] X. Wan, F. Zhang, Q. Chu, K. Zhang, F. Sun, B. Yuan, and Z. Liu, Three-dimensional re-
construction using an adaptive simultaneous algebraic reconstruction technique in electron
tomography, J. Structural Biology, 174 (2011), pp. 277–287.

