14 research outputs found

    Growth of Human Colorectal Cancer SW1116 Cells Is Inhibited by Cytokine-Induced Killer Cells

    Get PDF
    Previous reports have suggested that treatment with cytokine-induced killer (CIK) cells may benefit patients with various types of tumor. The aim of this study was to evaluate the antitumor effects of CIK cells against the colorectal cancer line SW1116 in vitro and in vivo. CIK cells were generated routinely from peripheral blood mononuclear cells of healthy human donors, and the number of CD3+CD56+ cells was expanded more than 1300-fold after 14-day culture. At an effector : target cell ratio of 50 : 1, the percentage lysis of SW1116 cells reached 68% in the presence of CIK cells, Experimental mice injected with SW1116 cells subcutaneously were divided randomly into four groups: untreated, 5-fluorouracil (5-FU)-treated, CIK-consecutive treated (injected once/day) and CIK-interval treated (injected once every 5 days). CIK cells were injected abdominally five times in total. Compared with the untreated group, xenograft growth was inhibited greatly by CIK treatment, to nearly the same extent as with 5-FU treatment. We demonstrated that the necrotic area in the tumor xenograft was markedly larger in the CIK-treated groups than in the other groups. These findings suggest that CIK-based immunotherapy may represent an effective choice for patients with colorectal cancer

    Co-infusion of haplo-identical CD19-chimeric antigen receptor T cells and stem cells achieved full donor engraftment in refractory acute lymphoblastic leukemia

    Get PDF
    Abstract Background Elderly patients with relapsed and refractory acute lymphoblastic leukemia (ALL) have poor prognosis. Autologous CD19 chimeric antigen receptor-modified T (CAR-T) cells have potentials to cure patients with B cell ALL; however, safety and efficacy of allogeneic CD19 CAR-T cells are still undetermined. Case presentation We treated a 71-year-old female with relapsed and refractory ALL who received co-infusion of haplo-identical donor-derived CD19-directed CAR-T cells and mobilized peripheral blood stem cells (PBSC) following induction chemotherapy. Undetectable minimal residual disease by flow cytometry was achieved, and full donor cell engraftment was established. The transient release of cytokines and mild fever were detected. Significantly elevated serum lactate dehydrogenase, alanine transaminase, bilirubin and glutamic-oxalacetic transaminase were observed from days 14 to 18, all of which were reversible after immunosuppressive therapy. Conclusions Our preliminary results suggest that co-infusion of haplo-identical donor-derived CAR-T cells and mobilized PBSCs may induce full donor engraftment in relapsed and refractory ALL including elderly patients, but complications related to donor cell infusions should still be cautioned. Trial registration Allogeneic CART-19 for Elderly Relapsed/Refractory CD19+ ALL. NCT0279955

    Low-dose HDACi potentiates anti-tumor activity of macrophages in immunotherapy

    No full text
    The success of checkpoint immunotherapy has created optimism that cancer may be curable. However, not all patients respond, resistance is common and many patients relapse owing to immune escape. We demonstrate that HDAC inhibition not only decreases the trafficking of myeloid-derived suppressor cells (MDSCs) into tumors but also potentiates tumor-associated macrophages (TAMs) to specify anti-tumoral phenotype and bolster T cells activation within the tumor microenvironment (TME)

    Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy

    No full text

    Mesenchymal stromal/stem cells and their extracellular vesicles in liver diseases: insights on their immunomodulatory roles and clinical applications

    No full text
    Abstract Liver disease is a leading cause of mortality and morbidity that is rising globally. Liver dysfunctions are classified into acute and chronic diseases. Various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Up to now, liver transplantation could be the last resort for patients with end-stage liver disease. However, liver transplantation still faces unavoidable difficulties. Mesenchymal stromal/stem cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties can be effectively used for treating liver diseases but without the limitation that are associated with liver transplantation. In this review, we summarize and discuss recent advances in the characteristics of MSCs and the potential action mechanisms of MSCs-based cell therapies for liver diseases. We also draw attention to strategies to potentiate the therapeutic properties of MSCs through pre-treatments or gene modifications. Finally, we discuss progress toward clinical application of MSCs or their extracellular vesicles in liver diseases
    corecore