5 research outputs found

    Identification and Characterization of Alternative Promoters, Transcripts and Protein Isoforms of Zebrafish R2 Gene

    Get PDF
    Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the de novo synthesis of deoxyribonucleoside triphosphates. Expression of RNR subunits is closely associated with DNA replication and repair. Mammalian RNR M2 subunit (R2) functions exclusively in DNA replication of normal cells due to its S phase-specific expression and late mitotic degradation. Herein, we demonstrate the control of R2 expression through alternative promoters, splicing and polyadenylation sites in zebrafish. Three functional R2 promoters were identified to generate six transcript variants with distinct 5β€² termini. The proximal promoter contains a conserved E2F binding site and two CCAAT boxes, which are crucial for the transcription of R2 gene during cell cycle. Activity of the distal promoter can be induced by DNA damage to generate four transcript variants through alternative splicing. In addition, two novel splice variants were found to encode distinct N-truncated R2 isoforms containing residues for enzymatic activity but no KEN box essential for its proteolysis. These two N-truncated R2 isoforms remained in the cytoplasm and were able to interact with RNR M1 subunit (R1). Thus, our results suggest that multilayered mechanisms control the differential expression and function of zebrafish R2 gene during cell cycle and under genotoxic stress

    Molecular analysis and functions of p53R2 in zebrafish

    No full text
    p53R2 is a newly identified small subunit of ribonucleotide reductase and plays a pivotal role in the supply of dNTPs for genomic DNA repair and mitochondrial DNA synthesis, but little is known about its functions in zebrafish. Herein, we obtained the cDNA of zebrafish p53R2 that shares 72.8% and 72.5% amino acid identities with human p53R2 and zebrafish R2, respectively. Residues crucial for enzymatic activity are highly conserved among p53R2 proteins from different species. p53R2 in zebrafish was maternally expressed, its transcripts were detected in developing embryos and all adult tissues examined. A 250-bp minimal promoter upstream of the translational initiation site was identified to drive basal expression of p53R2 in a p53-independent manner. Expression of p53R2 was induced by DNA-damaging reagents CPT or MMS, but suppressed by p53-knockdown in zebrafish embryos. Moreover, p53R2 was mainly distributed in the cytoplasm of cells under normal condition and upon DNA damage. Furthermore, overexpression of p53R2 attenuated apoptosis of embryonic cells caused by CPT or MMS treatment and protected developing embryos from death. Therefore, functions of p53R2 in zebrafish are closely associated with its activity in DNA repair and synthesis. (C) 2010 Elsevier B.V. All rights reserved
    corecore