83 research outputs found

    Energy loss in a fluctuating hydrodynamical background

    Full text link
    Recently it has become apparent that event-by-event fluctuations in the initial state of hydrodynamical modelling of ultrarelativistic heavy-ion collisions are crucial in order to understand the full centrality dependence of the elliptic flow coefficient v_2. In particular, in central collisions the density fluctuations play a major role in generating the spatial eccentricity in the initial state. This raises the question to what degree high P_T physics, in particular leading-parton energy loss, which takes place in the background of an evolving medium, is sensitive to the presence of the event-by-event density fluctuations in the background. In this work, we report results for the effects of fluctuations on the nuclear modification factor R_AA in both central and noncentral sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC. Two different types of energy-loss models, a radiative and an elastic, are considered. In particular, we study the dependence of the results on the assumed spatial size of the density fluctuations, and discuss the angular modulation of R_AA with respect to the event plane.Comment: 9 pages, 9 figure

    EPS09 - Nuclear PDFs and Their Uncertainties at NLO

    Full text link
    In this talk, we present our recent next-to-leading order (NLO) nuclear parton distribution functions (nPDFs), which we call EPS09. As an extension to earlier NLO analyses, we supplement the deep inelastic scattering and Drell-Yan dilepton data by inclusive midrapidity pion measurements from RHIC in order to reduce the otherwize large freedom in the nuclear gluon densities. Our Hessian-type error analysis leading to a collection of nPDF error sets, is the first of its kind among the nPDF analyses.Comment: 4 pages, 4 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    LHC data challenges the contemporary parton-to-hadron fragmentation functions

    Full text link
    We discuss the inclusive high-pT charged-particle production in proton-proton collisions at the LHC. The experimental data are compared to the NLO perturbative QCD calculations employing various sets of parton-to-hadron fragmentation functions. Most of the theoretical predictions are found to disastrously overpredict the measured cross sections, even if the scale variations and PDF errors are accounted for. The problem appears to arise from the presently too hard gluon-to-hadron fragmentation functions.Comment: Transcription of the talk given in DIS2014 conferenc
    • …
    corecore