24 research outputs found

    Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine

    Get PDF
    Dexmedetomidine is an alpha(2)-adrenoceptor agonist with sedative, anxiolytic, sympatholytic, and analgesic-sparing effects, and minimal depression of respiratory function. It is potent and highly selective for alpha(2)-receptors with an alpha(2):alpha(1) ratio of 1620:1. Hemodynamic effects, which include transient hypertension, bradycardia, and hypotension, result from the drug's peripheral vasoconstrictive and sympatholytic properties. Dexmedetomidine exerts its hypnotic action through activation of central pre- and postsynaptic alpha(2)-receptors in the locus coeruleus, thereby inducting a state of unconsciousness similar to natural sleep, with the unique aspect that patients remain easily rousable and cooperative. Dexmedetomidine is rapidly distributed and is mainly hepatically metabolized into inactive metabolites by glucuronidation and hydroxylation. A high inter-individual variability in dexmedetomidine pharmacokinetics has been described, especially in the intensive care unit population. In recent years, multiple pharmacokinetic non-compartmental analyses as well as population pharmacokinetic studies have been performed. Body size, hepatic impairment, and presumably plasma albumin and cardiac output have a significant impact on dexmedetomidine pharmacokinetics. Results regarding other covariates remain inconclusive and warrant further research. Although initially approved for intravenous use for up to 24 h in the adult intensive care unit population only, applications of dexmedetomidine in clinical practice have been widened over the past few years. Procedural sedation with dexmedetomidine was additionally approved by the US Food and Drug Administration in 2003 and dexmedetomidine has appeared useful in multiple off-label applications such as pediatric sedation, intranasal or buccal administration, and use as an adjuvant to local analgesia techniques

    Prospective clinical validation of the Eleveld propofol pharmacokinetic-pharmacodynamic model in general anaesthesia

    Get PDF
    BACKGROUND: Target-controlled infusion (TCI) systems incorporating pharmacokinetic (PK) or PK-pharmacodynamic (PK-PD) models can be used to facilitate drug administration. Existing models were developed using data from select populations, the use of which is, strictly speaking, limited to these populations. Recently a propofol PK-PD model was developed for a broad population range. The aim of the study was to prospectively validate this model in children, adults, older subjects, and obese adults undergoing general anaesthesia. METHODS: The 25 subjects included in each of four groups were stratified by age and weight. Subjects received propofol through TCI with the Eleveld model, titrated to a bispectral index (BIS) of 40-60. Arterial blood samples were collected at 5, 10, 20, 30, 40, and 60 min after the start of propofol infusion, and every 30 min thereafter, to a maximum of 10 samples. BIS was recorded continuously. Predictive performance was assessed using the Varvel criteria. RESULTS: For PK, the Eleveld model showed a bias < ±20% in children, adults, and obese adults, but a greater bias (-27%) in older subjects. Precision was <30% in all groups. For PD, the bias and wobble were <5 BIS units and the precision was close to 10 BIS units in all groups. Anaesthetists were able to achieve intraoperative BIS values of 40-60 using effect-site target concentrations about 85-140% of the age-adjusted Ce50. CONCLUSIONS: The Eleveld propofol PK-PD model showed predictive precision <30% for arterial plasma concentrations and BIS predictions with a low (population) bias when used in TCI in clinical anaesthesia practice

    Dexmedetomidine pharmacokineticpharmacodynamic modelling in healthy volunteers:1. Influence of arousal on bispectral index and sedation

    Get PDF
    Background. Dexmedetomidine, a selective alpha(2)-adrenoreceptor agonist, has unique characteristics, such as maintained respiratory drive and production of arousable sedation. We describe development of a pharmacokinetic-pharmacodynamic model of the sedative properties of dexmedetomidine, taking into account the effect of stimulation on its sedative properties. Methods. In a two-period, randomized study in 18 healthy volunteers, dexmedetomidine was delivered in a step-up fashion by means of target-controlled infusion using the Dyck model. Volunteers were randomized to a session without background noise and a session with pre-recorded looped operating room background noise. Exploratory pharmacokineticpharmacodynamic modelling and covariate analysis were conducted in NONMEM using bispectral index (BIS) monitoring of processed EEG. Results. We found that both stimulation at the time of Modified Observer's Assessment of Alertness/Sedation (MOAA/S) scale scoring and the presence or absence of ambient noise had an effect on the sedative properties of dexmedetomidine. The stimuli associated with MOAA/S scoring increased the BIS of sedated volunteers because of a transient 170% increase in the effect-site concentration necessary to reach half of the maximal effect. In contrast, volunteers deprived of ambient noise were more resistant to dexmedetomidine and required, on average, 32% higher effect-site concentrations for the same effect as subjects who were exposed to background operating room noise. Conclusions. The new pharmacokinetic-pharmacodynamic models might be used for effect-site rather than plasma concentration target-controlled infusion for dexmedetomidine in clinical practice, thereby allowing tighter control over the desired level of sedation

    Dexmedetomidine Clearance Decreases with Increasing Drug Exposure:Implications for Current Dosing Regimens and Target-controlled Infusion Models Assuming Linear Pharmacokinetics

    Get PDF
    Background: Numerous pharmacokinetic models have been published aiming at more accurate and safer dosing of dexmedetomidine. The vast majority of the developed models underpredict the measured plasma concentrations with respect to the target concentration, especially at plasma concentrations higher than those used in the original studies. The aim of this article was to develop a dexmedetomidine pharmacokinetic model in healthy adults emphasizing linear versus nonlinear kinetics. Methods: The data of two previously published clinical trials with stepwise increasing dexmedetomidine target-controlled infusion were pooled to build a pharmacokinetic model using the NONMEM software package (ICON Development Solutions, USA). Data from 48 healthy subjects, included in a stratified manner, were utilized to build the model. Results: A three-compartment mamillary model with nonlinear elimination from the central compartment was superior to a model assuming linear pharmacokinetics. Covariates included in the final model were age, sex, and total body weight. Cardiac output did not explain between-subject or within-subject variability in dexmedetomidine clearance. The results of a simulation study based on the final model showed that at concentrations up to 2 ng center dot ml(-1), the predicted dexmedetomidine plasma concentrations were similar between the currently available Hannivoort model assuming linear pharmacokinetics and the nonlinear model developed in this study. At higher simulated plasma concentrations, exposure increased nonlinearly with target concentration due to the decreasing dexmedetomidine clearance with increasing plasma concentrations. Simulations also show that currently approved dosing regimens in the intensive care unit may potentially lead to higher-than-expected dexmedetomidine plasma concentrations. Conclusions: This study developed a nonlinear three-compartment pharmacokinetic model that accurately described dexmedetomidine plasma concentrations. Dexmedetomidine may be safely administered up to target-controlled infusion targets under 2 ng center dot ml(-1) using the Hannivoort model, which assumed linear pharmacokinetics. Consideration should be taken during long-term administration and during an initial loading dose when following the dosing strategies of the current guidelines

    Utility of the SmartPilot® View advisory screen to improve anaesthetic drug titration and postoperative outcomes in clinical practice: a two-centre prospective observational trial.

    Get PDF
    BACKGROUND The advisory system SmartPilot® View (Drägerwerk AG, Lübeck, Germany) provides real-time, demographically adjusted pharmacodynamic information throughout anaesthesia, including time course of effect-site concentrations of administered drugs and a measure of potency of the combined drug effect termed the "'Noxious Stimulation Response Index' (NSRI). This dual-centre, prospective, observational study assesses whether the availability of SmartPilot® View alters the behaviour of anaesthetic drug titration of anaesthetists and improves the Anaesthesia Quality Score (AQS; percentage of time spent with MAP 60-80 mm Hg and Bispectral Index [BIS] 40-60 [blinded]). METHODS We recruited 493 patients scheduled for elective surgery in two university centres. A control group (CONTROL; n=170) was enrolled to observe drug titration in current practice. Thereafter, an intervention group was enrolled, for which SmartPilot® View was made available to optimise drug titration (SPV; n=188). The AQS, haemodynamic and hypnotic effects, recovery times, pain scores, and other parameters were compared between groups. RESULTS There were 358 patients eligible for analysis. Anaesthesia quality score was similar between CONTROL and SPV (median AQS [Q1-Q3]) 25.3% [7.4-41.5%] and 22.2% [8.0-44.4%], respectively; P=0.898). Compared with CONTROL, SPV patients had less severe hypotension and hypertension, less BIS <40, faster tracheal extubation, and lower early postoperative pain scores. CONCLUSIONS Adding SmartPilot® View information did not affect average drug titration behaviour. However, small improvements in control of MAP and BIS and early recovery suggest improved titration for some patients without increasing the risk of overdosing or underdosing. CLINICAL TRIAL REGISTRATION NCT01467167

    Comparison of haemodynamic- and electroencephalographic-monitored effects evoked by four combinations of effect-site concentrations of propofol and remifentanil, yielding a predicted tolerance to laryngoscopy of 90%

    Get PDF
    This prospective study evaluates haemodynamic and electroencephalographic effects observed when administering four combinations of effect-site concentrations of propofol (Ce-PROP) and remifentanil (Ce-REMI), all yielding a single predicted probability of tolerance of laryngoscopy of 90% (P-TOL = 90%) according to the Bouillon interaction model. We aimed to identify combinations of Ce-PROP and Ce-REMI along a single isobole of P-TOL that result in favourable hypnotic and haemodynamic conditions. This knowledge could be of advantage in the development of drug advisory monitoring technology. 80 patients (18-90 years of age, ASA I-III) were randomized into four groups and titrated towards Ce-PROP (Schnider model, ug.ml(-1)) and Ce-REMI (Minto model, ng.ml(-1)) of respectively 8.6 and 1, 5.9 and 2, 3.6 and 4 and 2.0 and 8. After eleven minutes of equilibration, baseline measurements of haemodynamic endpoints and bispectral index were compared with three minutes of responsiveness measurements after laryngoscopy. Before laryngoscopy, bispectral index differed significantly (p < 0.0001) between groups in concordance with Ce-PROP. Heart rate decreased with increasing Ce-REMI (p = 0.001). The haemodynamic and arousal responses evoked by laryngoscopy were not significantly different between groups, but Ce-PROP = 3.6 mu g.ml(-1) and Ce-REMI = 4 ng.ml(-1) evoked the lowest median value for increment HR and increment SAP after laryngoscopy. This study provides clinical insight on the haemodynamic and hypnotic consequences, when a model based predicted P-TOL is used as a target for combined effect-site controlled target- controlled infusion of propofol and remifentanil. Heart rate and bispectral index were significantly different between groups despite a theoretical equipotency for P-TOL, suggesting that each component of the anaesthetic state (immobility, analgesia, and hypnotic drug effect) should be considered as independent neurophysiological and pharmacological phenomena. However, claims of (in)accuracy of the predicted P-TOL must be considered preliminary because larger numbers of observations are required for that goal

    Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine

    Get PDF
    corecore