52 research outputs found

    The role of FGF23/Klotho in mineral metabolism and chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a global health burden of growing incidence and prevalence. As renal function declines disturbances in mineral metabolism, such as hyperphosphatemia and secondary hyperparathyroidism, inevitably develop. These metabolic changes are closely associated with poor prognosis and survival. The bonederived hormone fibroblast growth factor-23 (FGF23) and its co-receptor Klotho represent a novel endocrine axis regulating mineral metabolism in health and disease. FGF23-Klotho signalling inhibits renal phosphate reabsorption and activation of vitamin D, and reduces secretion of parathyroid hormone (PTH). Serum levels of FGF23 rise at early stages of CKD, presumably due to increased phosphate load, and numerous studies identify elevated FGF23 as a predictor of adverse clinical outcome. In contrast, tissue expression of Klotho decreases in parallel with CKD progression and reaches low or undetectable levels in end-stage renal disease. Importantly, mice lacking Klotho develop numerous complications associated with accelerated ageing, and many patients with advanced CKD, a state of Klotho deficiency, display a similar senescentlike phenotype. Altogether, FGF23 excess and lack of Klotho may be key pathogenic factors in CKD. In the present thesis we sought to elucidate the role of renal and parathyroid FGF23-Klotho signalling in physiology and in CKD. In Study I we investigate Klotho levels in surgically resected parathyroid tissue specimen from CKD patients with secondary hyperparathyroidism, and find diminished Klotho expression paralleling the decline in renal function. Further, we demonstrate that FGF23 dose-dependently suppresses Klotho in bovine parathyroid cell culture, indicating a ligand-receptor regulatory process. In Study II we generate parathyroid-specific Klotho knockout mice (PTH-KL-/-) using Cre-Lox recombination. PTH-KL-/- mice display a normal gross phenotype with a preserved calcium-PTH axis. Their PTH response is similar to wild-type mice when treated with FGF23 or challenged with renal failure. Yet, FGF23 treatment activates the MAPK pathway in wild-type mice but not in PTH-KL-/- mice. Importantly, blocking of calcineurin with cyclosporine A abolishes the FGF23-mediated PTH suppression in PTH-KL-/- mice, whereas wild-type mice remain responsive. Thus, we identify a novel calcineurin-dependent pathway in the parathyroid glands that, in the absence of Klotho, mediates acute suppression of PTH secretion by FGF23. In Study III we develop a novel, non-surgical, mouse model of tubulointerstitial nephropathy. By adding various concentrations of adenine to the diet we define an adjustable protocol for inducing and maintaining uremia in mice. In Study IV we generate distal tubule-specific Klotho knockout mice (Ksp-KL-/-). In contrast to systemic Klotho knockout mice, Ksp-KL-/- mice are fertile with a normal gross phenotype. Adult Ksp-KL-/- mice are hyperphosphatemic, indicating attenuated effects of FGF23 on proximal tubular phosphate handling. Further, FGF23 is higher in Ksp-KL-/- mice than in wild-type mice with matched serum phosphate, suggesting phosphate-independent regulation of FGF23 in Ksp-KL-/- mice. Collectively, the studies presented in this thesis identify several novel and critical aspects of FGF23-Klotho signalling and function in health and disease, and provide important tools allowing for continuous investigation

    Особенности банковской системы США

    Get PDF
    В статье рассматриваются важнейшие моменты в истории банковской системы США, изменения в структуре американской банковской системе на разных этапах ее развития, особенности статуса национальных банков и банков штатов. Делается вывод о том, что своеобразие современной банковской системы США во многом определяется ее историей

    Tissue expression and source of circulating αKlotho

    Get PDF
    αKlotho (Klotho), a type I transmembrane protein and a coreceptor for Fibroblast Growth Factor-23, was initially thought to be expressed only in a limited number of tissues, most importantly the kidney, parathyroid gland and choroid plexus. Emerging data may suggest a more ubiquitous Klotho expression pattern which has prompted reevaluation of the restricted Klotho paradigm. Herein we systematically review the evidence for Klotho expression in various tissues and cell types in humans and other mammals, and discuss potential reasons behind existing conflicting data. Based on current literature and tissue expression atlases, we propose a classification of tissues into high, intermediate and low/absent Klotho expression. The functional relevance of Klotho in organs with low expression levels remain uncertain and there is currently limited data on a role for membrane-bound Klotho outside the kidney. Finally, we review the evidence for the tissue source of soluble Klotho, and conclude that the kidney is likely to be the principal source of circulating Klotho in physiolog

    CDKN2A/p16INK4a expression is associated with vascular progeria in chronic kidney disease

    Get PDF
    Patients with chronic kidney disease (CKD) display a progeric vascular phenotype linked to apoptosis, cellular senescence and osteogenic transformation. This has proven intractable to modelling appropriately in model organisms. We have therefore investigated this directly in man, using for the first time validated cellular biomarkers of ageing (CDKN2A/p16INK4a, SA-β-Gal) in arterial biopsies from 61 CKD patients undergoing living donor renal transplantation. We demonstrate that in the uremic milieu, increased arterial expression of CDKN2A/p16INK4a associated with vascular progeria in CKD, independently of chronological age. The arterial expression of CDKN2A/p16INK4a was significantly higher in patients with coronary calcification (p=0.01) and associated cardiovascular disease (CVD) (p=0.004). The correlation between CDKN2A/p16INK4a and media calcification was statistically significant (p=0.0003) after correction for chronological age. We further employed correlate expression of matrix Gla protein (MGP) and runt-related transcription factor 2 (RUNX2) as additional pathognomonic markers. Higher expression of CDKN2A/p16INK4a, RUNX2 and MGP were observed in arteries with severe media calcification. The number of p16INK4a and SA-β-Gal positive cells was higher in biopsies with severe media calcification. A strong inverse correlation was observed between CDKN2A/p16INK4a expression and carboxylated osteocalcin levels. Thus, impaired vitamin K mediated carboxylation may contribute to premature vascular senescence

    A Transgenic Model Reveals the Role of Klotho in Pancreatic Cancer Development and Paves the Way for New Klotho-Based Therapy

    Get PDF
    Klotho; Càncer de pàncrees; Supressor del tumorKlotho; Cáncer de páncreas; Supresor de tumorKlotho; Pancreatic cancer; Tumor suppressorKlotho is an anti-aging transmembrane protein, which can be shed and can function as a hormone. Accumulating data indicate that klotho is a tumor suppressor in a wide array of malignancies, and designate the subdomain KL1 as the active region of the protein towards this activity. We aimed to study the role of klotho as a tumor suppressor in pancreatic ductal adenocarcinoma (PDAC). Bioinformatics analyses of The Cancer Genome Atlas (TCGA) datasets revealed a correlation between the survival of PDAC patients, levels of klotho expression, and DNA methylation, and demonstrated a unique hypermethylation pattern of klotho in pancreatic tumors. The in vivo effects of klotho and KL1 were examined using three mouse models. Employing a novel genetic model, combining pancreatic klotho knockdown with a mutation in Kras, the lack of klotho contributed to PDAC generation and decreased mousece survival. In a xenograft model, administration of viral particles carrying sKL, a spliced klotho isoform containing the KL1 domain, inhibited pancreatic tumors. Lastly, treatment with soluble sKL prolonged survival of Pdx1-Cre; KrasG12D/+;Trp53R172H/+ (KPC) mice, a model known to recapitulate human PDAC. In conclusion, this study provides evidence that klotho is a tumor suppressor in PDAC. Furthermore, these data suggest that the levels of klotho expression and DNA methylation could have prognostic value in PDAC patients, and that administration of exogenous sKL may serve as a novel therapeutic strategy to treat PDAC.This project was funded by the The Sami and Tova Sagol Foundation for the Study of Aging, the Margaret Stultz foundation for Pancreatic Cancer Research, the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Ministerio de Ciencia e Innovación ‘Proyectos I+D+I 2019, to M.C., (grant number PID2019-104034RB-I00) and by the TASMC excellence fund. to I.W

    CDKN2A/p16INK4a expression is associated with vascular progeria in chronic kidney disease

    Get PDF
    Patients with chronic kidney disease (CKD) display a progeric vascular phenotype linked to apoptosis, cellular senescence and osteogenic transformation. This has proven intractable to modelling appropriately in model organisms. We have therefore investigated this directly in man, using for the first time validated cellular biomarkers of ageing (CDKN2A/p16INK4a, SA-β-Gal) in arterial biopsies from 61 CKD patients undergoing living donor renal transplantation. We demonstrate that in the uremic milieu, increased arterial expression of CDKN2A/p16INK4a associated with vascular progeria in CKD, independently of chronological age. The arterial expression of CDKN2A/p16INK4a was significantly higher in patients with coronary calcification (p=0.01) and associated cardiovascular disease (CVD) (p=0.004). The correlation between CDKN2A/p16INK4a and media calcification was statistically significant (p=0.0003) after correction for chronological age. We further employed correlate expression of matrix Gla protein (MGP) and runt-related transcription factor 2 (RUNX2) as additional pathognomonic markers. Higher expression of CDKN2A/p16INK4a, RUNX2 and MGP were observed in arteries with severe media calcification. The number of p16INK4a and SA-β-Gal positive cells was higher in biopsies with severe media calcification. A strong inverse correlation was observed between CDKN2A/p16INK4a expression and carboxylated osteocalcin levels. Thus, impaired vitamin K mediated carboxylation may contribute to premature vascular senescence

    Effects of Klotho on fibrosis and cancer: A renal focus on mechanisms and therapeutic strategies

    Get PDF
    Klotho is a membrane-bound protein predominantly expressed in the kidney, where it acts as a permissive co-receptor for Fibroblast Growth Factor 23. In its shed form, Klotho exerts anti-fibrotic effects in several tissues. Klotho-deficient mice spontaneously develop fibrosis and Klotho deficiency exacerbates the disease progression in fibrotic animal models. Furthermore, Klotho overexpression or supplementation protects against fibrosis in various models of renal and cardiac fibrotic disease. These effects are mediated at least partially by the direct inhibitory effects of soluble Klotho on TGF beta 1 signaling, Wnt signaling, and FGF2 signaling. Soluble Klotho, as present in the circulation, appears to be the primary mediator of anti-fibrotic effects. Similarly, through inhibition of the TGF beta 1, Wnt, FGF2, and IGF1 signaling pathways, Klotho also inhibits tumorigenesis. The Klotho promoter gene is generally hypermethylated in cancer, and overexpression or supplementation of Klotho has been found to inhibit tumor growth in various animal models. This review focuses on the protective effects of soluble Klotho in inhibiting renal fibrosis and fibrosis in distant organs secondary to renal Klotho deficiency. We also discuss the structure-function relationships of Klotho domains and biological effects in the context of potential targeted treatment strategies

    A novel missense mutation in GALNT3 causing hyperostosis-hyperphosphataemia syndrome

    No full text
    Objective: Hyperostosis-hyperphosphataemia syndrome (HHS) is a rare hereditary disorder characterized by hyperphosphataemia, inappropriately normal or elevated 1,25-dihydroxyvitamin D-3 and localized painful cortical hyperostosis. HHS was shown to be caused by inactivating mutations in GALNT3, encoding UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 3 (GalNAc-transferase: GALNT3). Herein, we sought to identify the genetic cause of hyperphosphataernia and tibial hyperostosis in a 19-year-old girl of Colombian origin. Methods: Genomic DNA was extracted and sequencing analysis of the GALNT3 and fibroblast growth factor 23 (FGF23) genes performed. Serum levels of intact and C-terminal FGF23 were measured using two different ELISA methods. Results: Mutational analysis identified a novel homozygous missense mutation in exon 6 of GALNT3 (1584 G>A), leading to an amino acid shift from Arg to His at residue 438 (R438H). The mutation was not found in over 200 control alleles or in any single nucleotide polymorphism databases. The R438 residue is highly conserved throughout species and in all known GalNAc-transferase family members. Modelling predicted the substitution deleterious for protein structure. Importantly. the phosphaturic factor FGF23 was differentially processed. as reflected by low intact (15 pg/ml) but high C-terminal (839 RU/ml) serum FGF23 levels. Conclusions: We report on the first missense mutation in GALNT3 giving rise to HHS, since previous GALNT3 mutations in HHS caused aberrant splicing or premature truncation of the protein. The R438H substitution likely abrogates GALNT3 activity, in turn causing enhanced FGF23 degradation and subsequent hyperostosis/hyperphosphataemia
    corecore