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Klotho is a membrane-bound protein predominantly expressed in the kidney, where it acts as a permissive co-
receptor for Fibroblast Growth Factor 23. In its shed form, Klotho exerts anti-fibrotic effects in several tissues.
Klotho-deficient mice spontaneously develop fibrosis and Klotho deficiency exacerbates the disease progression
in fibrotic animal models. Furthermore, Klotho overexpression or supplementation protects against fibrosis in
various models of renal and cardiac fibrotic disease. These effects are mediated at least partially by the direct in-
hibitory effects of soluble Klotho on TGFβ1 signaling, Wnt signaling, and FGF2 signaling. Soluble Klotho, as pres-
ent in the circulation, appears to be the primary mediator of anti-fibrotic effects. Similarly, through inhibition of
the TGFβ1, Wnt, FGF2, and IGF1 signaling pathways, Klotho also inhibits tumorigenesis. The Klotho promoter
gene is generally hypermethylated in cancer, and overexpression or supplementation of Klotho has been found
to inhibit tumor growth in various animalmodels. This review focuses on the protective effects of soluble Klotho
in inhibiting renal fibrosis and fibrosis in distant organs secondary to renal Klotho deficiency.We also discuss the
structure-function relationships of Klotho domains and biological effects in the context of potential targeted
treatment strategies.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Fibrosis can be defined as an exaggerated response to tissue damage
leading to excessive deposition of extracellularmatrix. This processmay
becomemaladaptive and impair organ or tissue function. Renal fibrosis,
for instance, is a shared feature of chronic kidney disease (CKD) irre-
spective of primary etiology, providing a rationale for the development
of currently lacking anti-fibrotic drugs. One promising protein uniquely
poised to provide the basis for anti-fibrotic treatment strategies is the
renal anti-ageing protein Klotho. Deficiency of Klotho in mice leads to
a phenotype resembling human ageing, including a short lifespan, ky-
phosis, osteoporosis, vascular calcification, pulmonary emphysema, go-
nadal atrophy, and cognitive dysfunction [1]. Overexpression of Klotho,
on the other hand, extends lifespan by 20–30% [2] andprotects to a large
extent from renal disease [3–8], cardiac disease [8–12], pulmonary
damage [13,14], neurodegenerative disease [15–19], vascular disease
[20–22], and diabetes [23,24].

Klotho is amembrane-boundprotein primarily expressed in the kid-
ney, mostly in the distal tubule and at a low level in the proximal tubule

(see Fig. 1B), as well as in the parathyroid gland, choroid plexus, and si-
noatrial node [1,25,26]. Membrane-bound Klotho is a single-pass trans-
membrane protein with a 10 aa intracellular domain that has not been
found to have a function in signal transduction. The extracellular part
of Klotho contains two homologous domains, termed KL1 and KL2,
that share a high degree of sequence similarity [27–29]. Both below
KL2, just above the membrane, and in between KL1 and KL2, cleavage
sites are targeted by ADAM10 and ADAM17, producing soluble Klotho
proteins that either contain KL1, KL2, or both [30–32] (see Fig. 1A).
It appears that the predominant soluble Klotho protein is the one of
130 kDa, containing both KL1 and KL2 [33], and that further cleavage
is dependent on the generation of this 130 kDa soluble Klotho pro-
tein [34], although it should be noted that neither secondary cleav-
age product has been detected in human serum so far, only in in
vitro systems. Finally, an alternatively spliced Klotho mRNA tran-
script has been hypothesized to code for a secreted Klotho protein
[27,28], which would amount to the KL1 domain with a unique 10
aa tail, but this putative protein has proven rather elusive and has
not been identified.

Fig. 1. Klotho protein forms and Klotho expression pattern. A) Schematic representation of Klotho proteins. Membrane-bound Klotho contains a small intracellular domain, a
transmembrane domain, and a large extracellular domain consisting of two homologous domains termed KL1 and KL2. Proteolytic cleavage occurs at the indicated α cut and β cut
sites, giving rise to soluble Klotho proteins, comprising the entire extracellular domain, or the single KL1 or KL2 domains. B) Immunohistochemistry and in situ hybridization for Klotho
protein (using antibody KM2076) and Klotho mRNA, respectively, on human kidney tissue. Klotho is expressed predominantly in the distal convoluted tubule, with lower expression
in the proximal tubule. No positivity is observed in tubulointerstitial cells. Original magnifications: 200×.
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The anti-ageing functions ascribed to Klotho have been partially at-
tributed to its function as amembrane-bound co-receptor for Fibroblast
Growth Factor (FGF)23, promoting phosphaturia and inhibition of 1-
alpha-hydroxylation of 25-hydroxyvitamin D [35,36]. However, there
is mounting evidence that several of the phenotypic traits in Klotho de-
ficient mice are mediated by soluble Klotho, which is derived from
shedding of the membrane-bound protein and can be found in the cir-
culation and the urine as a humoral factor [30,33] (see Fig. 1A). Soluble
Klotho effects are mediated by direct modulation of several fundamen-
tal signaling pathways, including TGFβ1 [37], Wnt [38,39], IGF1 [2,40],
and FGF2 signaling [41]. It is via these pathways that Klotho is thought
to exert its marked anti-fibrotic effects. Furthermore, as many of these
pathways affect both the development of fibrosis and tumorigenesis, a
number of studies have identified Klotho as a tumor suppressor gene
[40,42,43]. Klotho is primarily derived from the kidney [44] and any
damage to the kidney will result in depression of Klotho expression
[20,45,46]. This places the kidney in a central position as a source of sol-
uble Klotho, a proteinwith demonstrated anti-fibrotic effects on several
distant organs.Wewill discuss the current state of the evidencewith re-
gard to Klotho and fibrosis, and explore the possibilities for future treat-
ment strategies based on Klotho delivery.

2. Soluble Klotho as an anti-fibrotic agent

When Klotho deficiency was discovered to lead to a phenotype re-
sembling human ageing [1], it was not immediately clear that Klotho
would become a subject of interest in fibrosis research. Over the years,
as various strategies of Klotho overexpression and supplementation
had been employed in various models of fibrotic diseases, it became in-
creasingly apparent that Klotho is an endogenous inhibitor of the path-
ological fibrotic response. Interestingly, experiments usingmodels such
as unilateral ureteral obstruction (UUO) and ischemia-reperfusion inju-
ry (IRI) have been replicated many times, providing us with a solid sci-
entific basis for discussion of the anti-fibrotic effects exerted by Klotho.
We will herein focus first on establishing this relationship between
Klotho and fibrosis, before addressing the molecular mechanisms.

2.1. Klotho and renal fibrosis

2.1.1. Klotho deficiency induces and promotes renal fibrosis in vivo
As a primarily renal protein with extensive renoprotective effects, it

is perhaps surprising that Klotho deficiency only leads to a relatively
mild renal phenotype. Fully Klotho-deficientmice display both vascular
and tubular calcification [47], a decline in renal function [20], and amild
degree of interstitial fibrosis, as indicated by increased collagen deposi-
tion onMasson Trichrome staining, and an increase inα-smoothmuscle
actin (SMA) expression [48]. As expected, heterozygous Klotho mice
(Klotho+/−) have a less striking phenotype compared to full Klotho
knockout mice (Klotho−/−) mice and few pathological changes at a
comparable age [49–51], but they also have a lifespan longer than the
8–10 weeks Klotho−/− mice generally experience. At around
16 weeks of age, Klotho+/− mice have been shown to develop both
glomerulosclerosis and interstitial fibrosis, accompanied by albumin-
uria and a decline in renal function [52,53]. Interestingly, these mice
also developmesangial matrix expansion (MME), which is another typ-
ically ageing-related renal lesion characterized by increased extracellu-
lar matrix deposition by mesangial cells [49,52], as well as collapsing of
glomeruli and tubular dilation, atrophy, and cast formation [52]. As a
general observation, it is probably best to regard Klotho−/− mice as a
model for the premature ageing that occurs in severe human Klotho de-
ficiency, like end-stage renal disease (ESRD), in which the development
of vascular calcification is also a dominant feature. On the other hand,
the milder Klotho+/− phenotype appears to be more akin to partial
human Klotho deficiency, like in physiological ageing or mild tomoder-
ate chronic kidney disease (CKD). As a rule, Klotho−/−mice are too frag-
ile to withstand the demands of anaesthesia and surgery, which only

allows us to establish that Klotho+/− mice display an increased suscep-
tibility to the development of a pathological response to injury, includ-
ing fibrosis, which is also characteristic of ageing. For example, after
UUO in Klotho+/− and wild-type (WT) mice, Sugiura et al. found that
Klotho+/− mice exhibited more renal fibrosis, as well as markedly
higher expression levels of α-SMA, fibronectin, TGFβ1, and S100A4,
coupled with a more pronounced loss of E-cadherin and endogenous
Klotho expression [48]. Satoh et al. describe a similarly exaggerated re-
sponse after UUO, cementing that a “second hit”will readily expedite fi-
brosis development in Klotho+/− mice [54], as do Sun et al. [55].
Paradoxically, however, the latter authors also report less fibrosis after
UUO in hypomorphic Klotho (kl/kl)mice, which is at oddswith other re-
ports that indicate that these almost fully Klotho-deficient mice gener-
ally do not survive surgery [48,56]. Extending the discussion to other
models, Shi et al. found that mice with one hypomorphic allele for
Klotho (kl/+), develop more extensive renal fibrosis and have higher
expression levels ofα-SMA, CTGF, and collagen I, 20weeks after bilater-
al IRI, compared toWTmice [7]. Overall, it appears that both Klotho−/−

and Klotho+/− mice are prone to the development of renal fibrosis, al-
though the complexity and timeline of the Klotho deficiency phenotype
constitute a challenge.

Acquired rather than genetic Klotho deficiency is also associated
with fibrosis, notwithstanding that causal relationships cannot be in-
ferred from associations. In various models of renal fibrosis, including
UUO [39,41,48,54,57–59], adriamycin nephropathy [39,60], cyclospor-
ine A nephropathy [61–65], IRI [7,8], 5/6th nephrectomy [66], doxorubi-
cin nephropathy [67], hypertension [22] (also with the addition of
indoxyl sulfate) [68], uremic toxemia [69], renal artery constriction
[70], adenine nephropathy [59,71–73], and diabetic nephropathy [74],
fibrosis has been shown to develop while Klotho expression is concur-
rently decreased, possibly potentiating or exacerbating the develop-
ment of fibrosis. More evidence supporting this notion of causality
stems from in vivo RNA interference as a model of acquired Klotho defi-
ciency. In both UUO- and adenine-induced renal failure models, in vivo
Klotho siRNA treatment exacerbates the development of renal fibrosis
and even potentiates the spontaneous development of fibrosis in
sham or control mouse kidneys [57,59,71–73]. Similarly, in all stages
of CKD but especially in ESRD patients in which we know renal fibrosis
is present, we also know that Klotho expression is extremely decreased
[20,45,46]. It is currently unknown whether mutations that confer an
impairment of Klotho function also induce renal fibrosis [75].

Taken together, it is well-established that Klotho deficiency is both
associatedwith renalfibrotic disease, aswell as induces and exacerbates
the development of renal fibrosis in many different models and in dif-
ferent species.

2.1.2. Klotho protects against the development of renal fibrosis in vivo
In addition to studies of fibrosis in Klotho deficiency, studies on ex-

periments with Klotho overexpression or supplementation provide ev-
idence fromwhich we can gauge its possible therapeutic potential. One
early indication that soluble Klotho is important in mediating the anti-
fibrotic effects is a study by Chen et al., inwhich kl/klmicewere injected
with soluble Klotho protein and developed less renal fibrosis, indicating
that soluble Klotho protein can ameliorate fibrosis induced by Klotho
deficiency [76].

More systematically, though, multiple UUO experiments supply ev-
idence that various strategies are successful in attenuating the develop-
ment of renal fibrosis. First of all, constitutive Klotho overexpression in
transgenic mice was shown to inhibit fibrosis, as well as collagen III,
CTGF, TGFβ1, fibronectin, cMyc, WISP1, β-catenin mRNA expression
levels, in addition to attenuating the decline in renal mass [54]. Fibro-
nectin protein levels, β-galactosidase activity, activated Rac1 levels,
and phosphorylated JNK levels were also decreased compared to WT
mice. Interestingly, a similar effect was achieved by overexpressing
Klotho in Klotho+/− mice that underwent UUO using skeletal muscle
electroporation, resulting in less fibrosis than in WT mice, also
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demonstrative of its potential [54]. The finding that ectopically
overexpressed Klotho protein can prevent the development of renal fi-
brosis suggests that a humoral factor, like soluble Klotho, is responsible
for the anti-fibrotic effects. Also illustrative of the therapeutic anti-fi-
brotic potential is the finding that induction of Klotho overexpression
both at 1 day before and even 3 days after UUO resulted in a marked re-
duction of fibrosis (including fibronectin and α-SMA protein expres-
sion), demonstrating how Klotho is capable of preventing fibrosis
even after the damage response has started to develop [39]. Thehypoth-
esis that these anti-fibrotic effects aremediated by soluble Klotho is fur-
ther substantiated by three studies in which UUO was performed in
mice that were then treated with various concentrations of recombi-
nant Klotho protein [37,41,77]. Assessing the effects of soluble Klotho
on fibrosis-related gene and protein expression after UUO, Doi et al.
found that Klotho dose-dependently decreased α-SMA and collagen I
mRNA and protein levels, as well as vimentin, Snail, Twist, MMP-2,
MMP-3, and MMP-9 mRNA levels, whereas, interestingly, TGFβ1
mRNA levels were unaffected [37]. Similarly, Wu et al. found that
mRNA levels ofα-SMA, collagen I, CTGF,MMP-2, and vimentinwere de-
creased by Klotho, without an effect on TGFβ1 mRNA [77]. Perhaps the
effects of partial Klotho deficiency and increased Klotho levels on TGFβ1
are different, but this is currently not clear. In the study by Guan et al., it
was found that protein levels of FGF2, fibronectin, and α-SMAwere de-
creased by soluble Klotho treatment, while E-cadherin protein expres-
sion was preserved [41]. Finally, one UUO study in rats indicates that
Klotho protein treatment may have similar effects also in other species
[78].

Another line of evidence that has started to explore the therapeutic
potential for Klotho as a treatment for renal fibrosis, is a series of studies
on IRI (in which Klotho overexpression had already been shown to be
protective [3]). Bilateral IRI in mice that constitutively overexpress
Klotho lead to less fibrosis and expression of fibrosis-related proteins,
likeα-SMA, collagen I, and CTGF [7], compared to in WTmice. Interest-
ingly, similar effects were found at 2, 4, and even 20 weeks after AKI if
mice were treated with soluble Klotho for only 4 days after induction
of bilateral IRI, attesting to the therapeutic potency of a hypothetical
Klotho-based treatment, even after the induction of renal damage [7,
8]. Another example of this is the finding that starting soluble Klotho
treatment 4 weeks after the induction of CKD (uninephrectomy
+ 30 min of contralateral IRI + high phosphate diet) and continuing
Klotho treatment for 3 months in these mice with established CKD,
renal fibrosis was reduced in both the Klotho-treated CKD mice and
Klotho-treated sham mice (that had received a high phosphate diet),
compared to vehicle-treated controls [8]. These studies also indicate
that to prevent renal fibrosis, treatment with Klotho protein is poten-
tially beneficial even if it is not administered before or directly after
the occurrence of a renal ischemic insult.

In addition to UUO and IRI, other renal disease models have been
used as well to test the effects of overexpression or supplementation
of Klotho on renal fibrosis. For instance, Klotho gene delivery markedly
reduced fibrosis in adriamycin nephropathy in mice, coupled with
lower expression levels of β-catenin, Snail1, PAI-1, and fibronectin
[39]. Klotho protein treatment in adriamycin nephropathy completely
prevented the development of renal fibrosis as well as up-regulation
of fibronectin and loss of E-cadherin on themRNA level [60]. In another
model, Klotho gene delivery prevented the development of fibrosis in-
duced by 5/6th nephrectomy after 6 weeks in mice [66] and, extending
the discussion to other species as well, in diabetic streptozotocin-
injected rats Klotho gene delivery also prevented renal fibrosis, as well
as fibronectin and vimentin protein expression [74]. In 24-week-old
spontaneously hypertensive rats (SHR), Klotho gene delivery at
12 weeks of age also prevented the development on hypertension-in-
duced renal fibrosis [22]. Finally, Klotho gene delivery has been shown
to reduce cyclosporine A (CsA) nephropathy-induced renal fibrosis
both in rats, including reduced α-SMA and TGFβ1 and increased E-
cadherin mRNA and protein levels [61], and in mice [62].

A different approach that has been studied is to increase endogenous
Klotho levels in order to decrease renal fibrosis. This is most commonly
accomplished by employing strategies targeting epigenetic regulation
of gene expression. This approach, however, does not allow for differen-
tiation between the effects of different Klotho proteins. Sun et al. were
the first to show that the Klotho promoter is hypermethylated by ure-
mic toxins, which concurrently resulted in renal fibrosis [69]. Using 5-
Aza-2dc as a DNA methyltransferase 1 (DNMT1) inhibitor, Klotho ex-
pression was increased in vivo, but the effect on fibrosis was not report-
ed. Yin et al., however, recently performed a similar experiment and
found that inhibition of DNMT1 both increased Klotho expression and
decreased renal fibrosis in UUO. This attenuation was abrogated by
Klotho siRNAs, indicating that Klotho rather than any other DNMT1-
demethylated gene is essential in preventing renal fibrosis [59]. The
same group reported similar results after using a different compound,
rhein,which also demethylated theKlotho promoter, resulting in less fi-
brosis (andmorefibrosis after RNA interference for Klotho) in bothUUO
and adenine-induced renal failure models [57,71]. A similar approach
has been tried successfully with a histone deacetylating agent that
also increase Klotho expression, showing that in adenine-induced
CKD, HDAC inhibitor trichostatin A both decreased renal fibrosis and in-
creased Klotho expression, an effect that was abolished in the presence
of Klotho siRNAs, illustrating the key role Klotho plays in this process
[72]. More specifically, HDAC3 inhibitor RGFP966 de-repressed Klotho
expression via PPARγ and prevented renal fibrosis, but only in the ab-
sence of Klotho siRNAs [73]. Klotho expressionwas also increased by in-
hibition of H3K9 methyltransferase G9a either pharmacologically using
BIX01294or after RNA interference, coincident with lessα-SMA, fibro-
nectin, and collagen-I protein expression [58]. Other strategies that
have shown that up-regulation of Klotho coincides with a halted de-
velopment of fibrosis include losartan treatment [79], pravastatin
treatment [64], N-acetylcysteine treatment [63], and curcumin treat-
ment [65], all in cyclosporine A nephropathy, as well as aliskiren
treatment in chronic ischemic kidney injury via renal artery constric-
tion [70] and TGFβRI inhibitor SB431542 treatment in adenine ne-
phropathy [73]. No causality, however, between an up-regulation
or a retention of Klotho expression and the outcome of a reduction
in renal fibrosis can be inferred from these studies.

To summarize, reports indicate that soluble Klotho, either directly
supplemented as recombinant protein or derived from induced or con-
stitutive overexpression, is capable of inhibiting the development of
renal fibrosis in various models and multiple species. Details from the
studies in which Klotho overexpression or supplementation has been
used in models of renal fibrosis, are summarized in Table 1.

2.2. Klotho and cardiac fibrosis

2.2.1. Klotho deficiency induces and promotes cardiac fibrosis in vivo
The effects of Klotho on fibrosis in the heart have been the subject of

a number of studies. As Klotho is not expressed in the heart except for in
the sinoatrial node [25], most effects Klotho exerts on the heart are ex-
pected to be mediated by kidney-derived soluble Klotho present in the
circulation [44]. Klotho deficiency leads to sinoatrial node dysfunction
and consequently to arrhythmias [25], as well as to an increase in
heart weight/body weight according to some [12,80], but not all ac-
counts [10,11]. Left ventricular ejection fraction, stroke volume, and car-
diac output were all found to be reduced in kl/+ mice compared to WT
mice [9].With regard to cardiac fibrosis, reports differ a bit: Hu et al. de-
scribe that kl/klmice havemore spontaneous cardiacfibrosis at 6weeks,
and evenmore at 12weeks of age, coupled withmore collagen-I andα-
actinin and β-myosin heavy chain expression [9]. Heterozygotes were
not found to have more spontaneous fibrosis at these ages. Xie et al.,
however, did not find more spontaneous cardiac fibrosis in kl/+ mice
[11]or in kl/kl mice [10]. This discrepancy with the study by Hu et al.
may be due to the use of a low-phosphate diet that increases Klotho ex-
pression and generally improves the phenotype of kl/kl mice [81,82].
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Conversely, this is substantiated by the finding that a high-phosphate
diet does spontaneously induce cardiac fibrosis in kl/+ mice at later
ages (9months and 15months) [9]. Furthermore, ageing itself substan-
tially exacerbated the development of cardiac fibrosis in these mice. Xie
et al. as well, using a “second hit”, do describe a marked increase in car-
diac fibrosis in kl/klmice compared to WT littermates after administra-
tion of isoproterenol, a model for stress-induced cardiac hypertrophy
[10]. In kl/+ mice as well, it was found that cardiac fibrosis secondary
to 5/6th nephrectomy was dramatically increased compared to WT lit-
termates [11], indicating an increased susceptibility to the induction of
cardiac fibrosis. It should be noted that 5/6th nephrectomy in kl/+
mice also exacerbated their Klotho deficiency. Taken together, these
findings indicate that complete Klotho deficiency may be accompanied

by a mild degree of cardiac fibrosis and that partial Klotho deficiency
leads to an increased propensity to developing cardiac fibrosis upon a
“second hit”.

2.2.2. Klotho protects against the development of cardiac fibrosis in vivo
Analogous to the kidney, different approaches and different models

have been employed to assess the effects of Klotho on cardiac fibrosis.
Hu et al. show that in Klotho-overexpressingmice fed a high-phosphate
diet until the age of 9 months and until the age of 15months, there was
less cardiac fibrosis than inWT littermates [9]. Only one study, by Xie et
al., has examined whether induction of Klotho expression can inhibit
the development of cardiac fibrosis. They used kl/+ mice and induced
cardiac fibrosis by 5/6th nephrectomy. Klotho gene delivery resulted

Table 1
Studies using Klotho treatment in animal models of renal fibrosis.

Klotho
intervention

Treatment
regimen

Fibrosis model Treatment
duration/time points

Recombinant
Klotho source

Severity of
model

Effect on
fibrosis

Effect size
on fibrosis

Reference

Klotho protein
treatment (i.p.)

20 µg/kg/48 h Kl/klmice 3–8 weeks of age Self–made, rat
Klotho

Mild Decreased Moderate [76]

Genetic Klotho
over expression

UUO in Klotho–
Tg mice

Day 3, 7, 14 Severe Decreased Large [54]

Induced Klotho
over expression

UUO in kl/ + mice Day 14 Severe Decreased Large [54]

Induced Klotho
over expression

1 day before
UUO

UUO in mice Day 7 Severe Decreased Large [39]

Induced Klotho
over expression

3 days after
UUO

UUO in mice Day 7 Severe Decreased Large [39]

Klotho protein
treatment (i.p.)

10 or 20
µg/kg/48 h

UUO in mice Day 3, 7 Self–made, rat
Klotho

Severe Decreased Large [37]

Klotho protein
treatment (i.p.)

10 µg/kg/48 h UUO in mice Day 3, 7, 14 R&D Systems,
mouse Klotho

Severe Decreased Large [41]

Klotho protein
treatment (i.p.)

10 µg/kg/48 h UUO in mice Day 7 R&D Systems,
human Klotho

Severe Decreased Large [77]

Klotho protein
injection (i.p.)

20 µg/kg/48 h UUO in rats Day 14 ?, rat Klotho Severe Decreased Large [78]

Genetic Klotho
over expression

Bilateral IRI in
mice

20 weeks Self–made, mouse
Klotho

Moderate Decreased Large [7]

Klotho protein
treatment (i.p.)

10 µg/kg for 4
days

Bilateral IRI in
mice

2, 4, 20 weeks Self–made, mouse
Klotho

Severe Decreased Large [7, 8]

Klotho protein
treatment (mini–
pump, i.p.)

300 µg/kg/month Uninephrectomy
+ IRI + HPD

3 months Self–made, mouse
Klotho

Severe Decreased Large [8]

Induced Klotho
over expression

Adriamycin
nephropathy

3 weeks Severe Decreased Large [39]

Induced Klotho
over expression

5/6th
nephrectomy

6 weeks Moderate Decreased Large [66]

Induced Klotho
over expression

STZ–induced
diabetic
nephropathy

12 weeks Mild Decreased Moderate [74]

Induced Klotho
over expression

Hypertension in
SHR

12 weeks Moderate Decreased Large [22]

Klotho protein
injection (i.p.)

10 µg/kg/48 h
(?)

CsA nephropathy
in rats

4 weeks R&D Systems,
mouse Klotho

Severe Decreased Large [61]

Induced Klotho
over expression

CsAnephropathy
in mice

4 weeks Moderate Decreased Moderate [62]

UUO, unilateral ureteral obstruction; IRI, ischemia-reperfusion injury; HPD, high-phosphate diet; STZ, streptozotocin; CsA, cyclosporin A; SHR, spontaneously hypertensive rats.
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in circulating Klotho levels still well belownormalWT Klotho levels, but
the development of cardiac fibrosis 35 days after 5/6th nephrectomy
wasmarkedly lower than in vector-treated kl/+mice [11]. Surprisingly,
one study, on angiotensin II infusion in Klotho-overexpressingmice, de-
scribes that there was actually a bit more fibrosis in these mice, for un-
clear reasons [83].More experiments, however, have been performed to
investigate the effects of soluble Klotho protein on cardiac fibrosis. Song
et al. treated mice with isoproterenol and Klotho and found that cardiac
fibrosis, both within the myocardium and associated with
intramyocardial arteries, was decreased at days 5 and 9, compared to
isoproterenol-treated mice [84]. Collagen I and III mRNA levels were
also decreased by Klotho treatment at 9 days after the start of isoproter-
enol treatment [85]. Huet al. usedKlotho treatment inmodels of AKI-in-
duced cardiomyopathy and CKD-related cardiomyopathy [8]. After
bilateral IRI, micewere treated with Klotho for 4 days and cardiac fibro-
sis was found to bemuch less extensive 20 weeks after surgery. Protein
levels of α-actinin and α-SMA were also decreased. It should be noted
that progression from AKI to CKD was prevented in these mice, so it is
not immediately clear whether the inhibition of fibrosis is the direct re-
sult from Klotho protein effects exerted on the heart, or whether the
prevention of cardiac fibrosis secondary to CKD is prevented by Klotho
effects on the kidney. In their CKD study, using uninephrectomy, contra-
lateral IRI, and a high-phosphate diet, Klotho treatment was started
4 weeks after surgery for 12 subsequent weeks. In these mice as well,
Klotho markedly inhibited the development of cardiac fibrosis, as well
as lowered the protein levels of α-actinin and α-SMA. As this experi-
ment again begs the question whether the heart is protected directly
from developing fibrosis, or is protected by the prevention of renal dis-
ease-induced fibrosis, the points should be made that Klotho itself is at
least one of the kidney-derived factors that may prevent cardiac fibrosis
and that Klotho also protects against cardiacfibrosis in the isoproterenol
model, which is not dependent on renal injury. Finally, as uremic toxins
like indoxyl sulfate, the accumulation of which is the result of renal
disease, are known to induce cardiac fibrosis, in part due to down-
regulation of Klotho [69], many of the effects that those uremic
toxins exert on the heart are also found to be prevented by Klotho
protein administration [12], although fibrosis has not yet been
assessed in such a study.

To summarize, it is generally found that Klotho prevents the devel-
opment of cardiacfibrosis and the fact that administration of the soluble
protein has this effect coupled with the absence of Klotho in
cardiomyocytes, lets us conclude that soluble Klotho is likely to directly
modulate these effects. Since Klotho is primarily kidney-derived, an

implication of these recent studies on cardiac fibrosis is that the renal
Klotho supply is integral to the prevention of cardiac fibrosis. Details
from the studies in which Klotho overexpression or supplementation
has been used in models of cardiac fibrosis, are summarized in Table 2.

2.3. Klotho and fibrosis in other tissues

2.3.1. Arteries
Most studies on the vasculature in Klotho deficiency have focused on

the calcification phenotype that plagues the full Klotho knockout. The
predominance of this pathological process is likely the reason that it
was not recognized until very recently that Klotho+/− mice develop ar-
terial stiffening, characterized by an increase in pulse wave velocity
(PWV) and deposition of extracellularmatrix in themedia [86–88]. No-
tably, the development of arterial stiffening does not appear to be sec-
ondary to the development of hypertension, as arterial stiffening
precedes the rise in blood pressure. The increased collagen deposition
can be found in the aorta, but not in other large arteries like the carotids
and femoral arteries, at least in this age range. The same group then re-
ported that in the high-fat diet model of arterial stiffening, PWV and
aortic collagen I protein expression were dramatically increased in
mice thatwere heterozygous for Klotho, indicating that Klotho deficien-
cy exacerbates arterial fibrotic processes as well [87]. No experiments
have been performed so far using transgenic mice that overexpress
Klotho, using Klotho gene delivery, or administering Klotho protein to
assess whether Klotho can prevent the development of arterial stiffen-
ing. However, treatmentwith eplerenone, inhibiting aldosterone signal-
ing [86], SRT1720 treatment, activating SIRT1 [88], and treatment with
AMPKα activator AICAR [87] have all been reported to prevent the de-
velopment of arterial stiffening in Klotho+/− deficient mice. Although
it is a controversial topic, there is currently no solid evidence supportive
of membrane-bound Klotho expression in arteries [89–91], so the vas-
culature should, like the heart, be considered a target tissue for soluble
Klotho.

Taken together, it has been shown that partial Klotho deficiency in
mice both induces and exacerbates fibrotic changes in the aorta, leading
to a higher pulsewave velocity. It is yet to be determinedwhether an in-
creased Klotho level has beneficial effects on arterial fibrotic processes.

2.3.2. Aortic valve
While full Klotho deficiency induces aortic valve calcification [92–

94], the aortic valve of Klotho+/− mice has only recently been exam-
ined. While there does not appear to be any fibrosis at baseline, a

Table 2
Studies using Klotho treatment in animal models of cardiac fibrosis.

Klotho intervention Treatment
regimen

Fibrosis model Time points Recombinant
Klotho source

Severity
of model

Effect on
fibrosis

Effect size
on fibrosis

Reference

Genetic Klotho
over expression

5/6th nephrectomy 4 weeks Severe Decreased Large [11]

Genetic Klotho
over expression

HPD in ageing mice 9, 15 months Moderate Decreased Mild [9]

Genetic Klotho
over expression

Angiotensin II in mice 4 weeks Very mild Increased Small [83]

Klotho protein treatment
(i.p.)

10 µg/kg/48 h Isoproterenol in mice Day 2, 5, 9 R&D Systems,
mouse Klotho

Moderate Decreased Large [84]

Klotho protein treatment
(i.p.)

10 µg/kg for 4
days

Bilateral renal IRI in mice 20 weeks Self–made,
mouse Klotho

Moderate Decreased Large [8]

Klotho protein treatment
(mini–pump, i.p.)

300 µg/kg/month Uninephrectomy + renal IRI
+ HPD

3 months Self–made,
mouse Klotho

Severe Decreased Large [8]

HPD, high-phosphate diet; IRI, ischemia-reperfusion injury.
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high-fat diet resulted inmarkedfibrosis of the aortic valve cusps, includ-
ing collagen I deposition, primarily on the aortic side [95], indicating
that Klotho deficiency may play a role in the pathogenesis of aortic
valve stenosis, affecting both aortic valve calcification and fibrosis. It is
yet to be investigatedwhether Klothooverexpression or protein supple-
mentation can counteract aortic valve fibrosis.

2.3.3. Lungs
There are currently two studies in which a relation between Klotho

and pulmonary fibrosis has been investigated. Firstly, Kim et al. recently
found that although kl/+ mice do not exhibit spontaneous pulmonary
fibrosis at 11–13 weeks of age, pulmonary fibrosis induced by tracheal
instillation of asbestos is exacerbated in kl/+mice as assessed histolog-
ically, with an increase in pulmonary collagen content, compared toWT
mice [96], fittingwith the overall hypothesis that Klotho deficiency ren-
ders organsmore prone to developing fibrosis. Shin et al. report that ov-
albumin-induced pulmonary fibrosis, which was progressive over the
course of 4 weeks, was negatively associated with pulmonary Klotho
protein expression [97]. However, whether Klotho is expressed in air-
way epithelium or in lung tissue in general, is not generally accepted
[98,99] so this observation warrants further analysis. There are current-
ly no reports on whether Klotho overexpression or supplementation af-
fects pulmonary fibrosis.

2.3.4. Skin
Given that the previous observations have established that Klotho

exerts anti-fibrotic effects in in vivo models, it is important to address
how Klotho affects wound healing. There is limited data on this topic,
but a few studies are able to provide us with at least partial answers.
Liu et al. were the first to describe that wound healing is impaired in

Klotho-deficient mice 4 days after wounding [38]. Another group com-
pared kl/kl, kl/+, andWTmice and found repeatedly that after inflicting
a standardized wound, kl/kl mice displayed slower wound healing [56,
100]. On day 7, when kl/+ and WT wounds were still 20% open, but
kl/kl wounds were still 80% open, collagen I and III mRNA levels were
lower in kl/kl mice, in line with a lower collagen content on both days
4 and day 7 in thesemice [56]. However, Klotho-deficientmice general-
ly develop a thinner dermis with hardly any subcutaneous adipose tis-
sue, compatible with their progeroid phenotype. The delay in wound
healing could be attributed to non-intrinsic dermal factors or the influ-
ence thereof (such as circulating Klotho?), since grafting of WT skin or
kl/kl skin on WT mice resulted in an undistinguishable wound healing
response [100]. Additionally, Klotho expression was not detected in
skin, ruling out effects of locally expressed Klotho. Although Klotho-de-
ficientmice apparently do not react towoundingby excessively produc-
ing ECMduring the process of wound healing, it would be interesting to
examine the morphology and composition of healed wounds as it is
possible that the resultant scar remodelling and turnover of ECM pro-
teins is impaired, leaving these mice with more fibrosis long-term. It is
also possible that other factors that influencewound healing, like angio-
genesis, which is impaired in Klotho-deficient mice [101], play a role in
delaying wound healing. A final possibility is that there is a mechanistic
discrepancy between Klotho effects in “physiological” fibrotic processes
as opposed to pathological fibrotic processes. There are currently no
studies examining wound healing in Klotho-overexpressing mice or
treatment of wounded mice with soluble Klotho.

2.3.5. Underexplored fibrosis models
As fibrosis is a feature ofmany diseases inmany different organs and

tissues and Klotho has been firmly established to exert anti-fibrotic

Fig. 2. Fibrosis-related growth factor pathways and their link to Klotho. Many pathways, including CTGF (connective tissue growth factor), TGFβ1 (transforming growth factor β1)
signaling, Wnt signaling and downstream plasminogen activator inhibitor 1 (PAI-1) activity, epidermal growth factor (EGF) signaling, platelet-derived growth factor (PDGF) signaling,
fibroblast growth factor 2 (FGF2) signaling, renin-angiotensin system activation resulting in high angiotensin II (AngII) levels, transient receptor potential cation channel subfamily C,
member 6 (TRPC6) overactivation (downstream of growth hormone signaling), Hedgehog signaling, and Notch signaling have been implicated in fibrosis. Klotho has been shown to
inhibit TGFβ1 signaling, Wnt signaling, RAS activation, FGF2 signaling, and TRPC6 expression. The link between Klotho and the EGF pathway is unclear and it is unknown whether a
direct link exists between Klotho and PGDF, CTGF, Hedgehog, and Notch signaling. (−): inhibitory effect of Klotho on respective pathway; (+) stimulatory effect of respective
pathway on fibrogenesis.
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effects in vivo, it is of utmost interest to address whether liver fibrosis,
intestinal fibrosis, and pulmonary fibrosis (in additional models) can
be ameliorated by Klotho treatment. A treatment-related strategy that
has also not yet been explored is thepossible use of Klotho in preventing
radiation-induced fibrosis. If effective, this could lead to the develop-
ment of a treatment that could be used prior to and/or during radiother-
apy, in order to prevent the development of fibrosis. This is an attractive
potential application, since radiotherapy is a setting in which the devel-
opment of fibrosis can be anticipated and preventative treatment could
be initiated, unlike the general population setting in which renal, cardi-
ac, or hepatic fibrosis develops insidiously.

3. Molecular mechanisms of action

Having discussed that Klotho is an anti-fibrotic factor in vivo, we
want to examine nextwhat is known about howKlotho exerts its effects
and viawhich pathways. It is rather uncommon that amonogenic disor-
der, such as Klotho deficiency in knockout mice, produces a phenotype
that so strikingly resembles human ageing. It is therefore perhaps not
surprising that Klotho deficiency dysregulates a great number of path-
ways, amongwhichmany that are implicated in fibrosis. The known di-
rect molecular interactions between Klotho and target proteins are
depicted in Fig. 2.

3.1. Klotho directly inhibits TGFβ1 signaling

Doi et al. first detailed that soluble Klotho directly binds to TGFβRII,
and inhibits its affinity for TGFβ1, thereby inhibiting downstream
Smad2 phosphorylation, signaling, and αSMA and vimentin expression
[37]. They further showed that overexpression of TGFβRII attenuated
the inhibitory effect of Klotho on TGFβ1 signaling and constitutively ac-
tivated TGFβRI abolished it, and that radioactively labelled TGFβ1 is
hardly found bound to TGFβRII on the cell-surface after crosslinking in
the presence of Klotho. These experiments establish that TGFβRII is
the factor in the pathway that Klotho interacts with, both physically
and functionally. In vitro, soluble Klotho was shown to prevent the ex-
pression of TGFβ1-induced fibrogenic genes and proteins [39].
Assessing the biological relevance of this effect in vivo, it was shown,
in terms of collagen-I and αSMA mRNA expression, that treatment
with anti-TGFβ1 antibodies and treatment with Klotho inhibited fibro-
sis after UUO, but a combination of both treatments did not have an ad-
ditional effect, suggesting that counteracting TGFβ1 signaling is a
mechanism that constitutes at least to a large extent Klotho-mediated
prevention of renal fibrosis [37].

3.2. Klotho directly inhibits Wnt signaling

It was demonstrated by Liu et al. using reciprocal immunoprecipita-
tion that circulating Klotho directly binds multiple soluble Wnt mole-
cules, including at least Wnt1, Wnt3, Wnt4 and Wnt5a [38]. Zhou et
al. later corroborated that Klotho binds to Wnt1 and Wnt4 [39] while
Maltare et al. confirmed theWnt7a binding capacity of Klotho in kidney
lysates [102]. It is thought that the binding of Klotho to Wnt molecules
amounts to sequestering them, essentially inhibiting down-streamWnt
signaling. Indeed, luciferase assays have shown that Wnt1 or Wnt3
overexpression-induced reporter activity was diminished dose-depen-
dently after Klotho co-transfection [38,39], but not if constitutively ac-
tive β-catenin was overexpressed, indicating that Wnt1 is the point of
action for Klotho [39]. Klotho overexpression prevented β-catenin acti-
vation in vitrowhile repressing expression of its target genes, like PAI-1
and Snail1. In vivo, Klotho deficiency leads to overactivation of Wnt sig-
naling, resulting in stem cell senescence and a complex bone pheno-
type, which could be prevented by Klotho overexpression in this
model, but also in a model of constitutive pathological Wnt activation
[38]. With regard to fibrosis, loss of Klotho expression in UUO and
adriamycin renal fibrosismodelswas associatedwith amarked increase

in active β-catenin, and Klotho overexpression prevented this change
[39,103] as well as the up-regulation of β-catenin target genes and the
development of renal fibrosis [39].

PAI-1, as a gene down-streamofWnt signaling and closely related to
TGFβ1, is also an important effector of fibrosis and intricately connected
to Klotho. As mentioned, Klotho overexpression will prevent the induc-
tion of PAI-1 expression [39]. Conversely, PAI-1 is up-regulated in
Klotho deficiency [104] and deletion of PAI-1 in Klotho−/− mice will
ameliorate many features of the Klotho deficiency phenotype [105].
While this indicates that PAI-1 is an important factor in the pathogene-
sis of Klotho deficiency-induced pathologies, fibrosis, however, has not
yet been studied in this context.

3.3. Klotho inhibits the expression of renin-angiotensin system genes

Relevant in particular for renal fibrosis is the finding that the genes
belonging to the renin-angiotensin system (RAS) are Wnt-induced β-
catenin targets [106]. Indeed, Klotho overexpression was shown to in-
hibit the expression of angiotensinogen, renin, ACE, and AT1 while
also inhibiting the development of fibrosis and the deposition of ECM
in 5/6th nephrectomy, UUO, and adriamycin nephropathy models [39,
66]. In general, it appears to be the case that Klotho decreases angioten-
sin II expression [66] and prevents angiotensin II-mediated renal dam-
age in a pressure independent fashion [107], while angiotensin II in
turn depresses renal Klotho expression [107,108]. Conversely, ACE in-
hibitors and AT1 receptor antagonists increase Klotho expression, likely
by alleviating the angiotensin II-mediated down-regulation of Klotho
expression [79,107]. On the other hand, in the heart, it was not found
that Klotho prevents cardiac fibrosis induced by angiotensin II. The ef-
fect size in this study was very small, as was the induction of fibrosis
in thismodel, but it could signify that Klotho does not have beneficial ef-
fects when applied downstream of angiotensin II specifically in the
heart. In short, although it is difficult to delineate the effects of different
pro-fibrotic pathways that are quite interwoven, antagonizing the RAS
is expected to constitute an important contributing anti-fibrotic mecha-
nism for Klotho as well.

3.4. Klotho inhibits FGF2 signaling

An often underappreciated aspect of membrane-bound Klotho func-
tioning as a co-receptor with FGFR1c [35,36], increasing the affinity for
FGF23 and potentiating downstream signaling that potentiates phos-
phaturia and inhibits activation of vitaminD, is the consequent decrease
in receptor affinity for FGF2 [41]. As Klotho is progressively down-regu-
lated during disease processes that cause fibrosis, FGF2 signaling is es-
sentially enabled, which in turn drives the development of renal
fibrosis. Immunoprecipitation for FGFR1 and immunoblotting for
Klotho, FGF2, and FGF23 revealed that FGF2 is co-immunoprecipitated
less in the presence of soluble Klotho, while FGF23 is then co-
immunoprecipitated more. In terms of competitive binding of FGF23
and FGF2 to Klotho, it is not yet fully clear to what extent this pertains
to soluble Klotho, which can bind to FGFR1c but not to potentiate
FGF23 signaling [109], and to what extent to membrane-bound Klotho.
Soluble Klotho also inhibited FGF2 signaling in vitro, suggesting that it is
at least partially responsible. Other authors have also found that Klotho
overexpression inhibits FGF2 signaling, which could be mediated by ei-
ther soluble, or membrane-bound Klotho, or both [42]. Highlighting the
important role of FGF2 in thepathogenesis of renalfibrosis in vivo, itwas
indeed found that mice that had undergone UUO did not develop as
much renal fibrosis if they were knockout for FGF2, while maintaining
higher membrane-bound Klotho protein levels than WT UUO mice
[41]. The up-regulation of FGF2 during UUO is also blunted by soluble
Klotho treatment, potentially indicating a negative feedback regulation,
whereas thehigher Klotho levels in the absence of FGF2 could reflect the
retention of Klotho, rather than up-regulation, although this is yet to be
resolved. It is also currently unknown whether depletion of Klotho in
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FGF2−/−mice or alternative modulation of FGF2 and/or Klotho levels in
combination would support the notion that inhibition of FGF2 signaling
is a functionally important effect of Klotho in counteracting fibrosis.

On the other hand, the phosphaturia-enabling effects of FGF23 facil-
itated by Klotho could also be regarded as amechanism that counteracts
fibrosis, as phosphate has been shown to promote fibrosis, especially in
the setting of Klotho deficiency [9].

3.5. Klotho decreases TRPC6 cell surface abundance

The calcium channel Transient receptor potential cation channel,
subfamily C, member 6 (TRPC6) is known mostly for its roles in
cardiomyocytes and podocytes, in which overactivation is associated
with disease. Klotho has been shown to down-regulate TRPC6 expres-
sion in the heart and in podocytes, thereby protecting againstmyocardi-
al hypertrophy [10,11] and podocyte damage that leads to foot process
effacement and proteinuria [50], respectively. Since TRPC6−/−mice also
display attenuation of renal fibrosis after UUO and no additional benefit
from Klotho treatment, there appears to be both a sizeable role for
TRPC6 in fibrosis and a common pathway in which Klotho-mediated
anti-fibrotic effects involve TRPC6, possibly in renal fibroblasts because
of the up-regulation of TRPC6 after UUO in those cells. Unlike the direct
enzymatic effects Klotho exerts on various ion channels, themechanism
behind TRPC6 regulation was found to be a PI3K-dependent effect,
inhibiting PI3K-mediated exocytosis of TRPC6 channels. There are at
least two mechanisms via which Klotho is likely to or has been shown
to regulate PI3K-mediated TRPC6 cell surface abundance. The first
would be inhibition of IGF1 signaling via binding to the IGF1 receptor
[2,40], thereby also blocking downstream PI3K activation. The second
would be inhibition of lipid raft-mediated PI3K and Akt signaling by
binding to monosialogangliosides on lipid rafts [110]. RNA in situ hy-
bridization has revealed that TRPC6 is particularly up-regulated in inter-
stitial fibroblasts after UUO, suggesting that it may be this cell type that
is relevant to the subsequent development of fibrosis. It should also be
noted that it may not just concern TRPC6 channels but TRPC6/TRPC3
heteromultimeric channels, if present in renal fibroblasts, since
TRPC3−/− and TRPC6−/−mice are protected fromUUO-induced fibrosis
to an extent similar to TRPC3−/−/TRPC6−/− mice, suggesting that both
channels may act in the same pathway. It is not known, however, if
Klotho affects TRPC3 channel cell surface abundance.

3.6. Other fibrosis-related pathways

A great number of pathways has been implicated in fibrosis, some of
which have been linked to Klotho, albeit in amore indirectmanner than
the aforementioned major fibrosis-related pathways. For instance, an
important pro-fibrotic pathway in renal fibrosis is epidermal growth
factor (EGF) signaling. Klotho probably plays a role in EGF signaling,
since Klotho deficiency leads to a decrease in EGF expression, at least
in the lung [111] and EGF has been shown to promote Klotho transcrip-
tion [112]. Furthermore, Klotho has been shown not to bind to EGFR
[37]. In short, the link between Klotho and EGF signaling is not yet prop-
erly characterized and it is yet to be determined whether there is any
relevance to fibrosis. Similarly, connective tissue growth factor (CTGF)
signaling is known to be involved in renal fibrosis, generally promoting
TGFβ1 and Wnt signaling. It is unknown whether Klotho affects CTGF
signaling, although Klotho did not co-immunoprecipitate with CTGF re-
ceptor LRP6 [37]. Another important pathway involved in fibrosis is
platelet-derived growth factor (PDGF) signaling, but it is unknown
whether Klotho affects this pathway, other than that it does not bind
to PDGFRα [37]. A pathway in which is Klotho is known to be involved
is mammalian target of rapamycin (mTOR) signaling, which is the case
at least because mTOR acts downstream of IGF1R. As expected, Klotho
deficiency leads to increased mTOR signaling [49]. However, mTOR
also appears to act somewhere upstream of Klotho, since mTOR has
been shown to inhibit vascular calcification in CKD models, but not in

Klotho−/− mice, indicating that mTOR affects this process via Klotho
[113]. SustainedNotch andHedgehog signalinghave also been implicat-
ed in renal fibrosis and given their interactions with theWnt and TGFβ1
pathways,may be altered in response to Klotho aswell. All in all, a num-
ber of pathways involved in fibrosis has been linked to Klotho (see Fig.
2), but the molecular mechanisms are not yet completely understood.
In addition, a number of pathways is not known to be associated with
Klotho, but given their involvement in the same process of fibrosis, it
may be worthwhile to address whether these pathways intersect, or
act independently.

4. Klotho and fibroblasts

Having assessed the most important pathways Klotho appears to be
involved in, it may be of interest to look more broadly at the effects
Klotho has on fibroblasts. The first question that has to be addressed is
whether Klotho is expressed by fibroblasts themselves. Data on this
topic are conflicting. First of all, Azuma et al. did not detect any Klotho
mRNA or protein in renal fibroblasts [114] and Pásztói et al. detected a
very low level of Klotho mRNA in synovial fibroblasts [115]. Similarly,
in renal interstitial fibroblasts, Huang et al. describe low Klotho mRNA
and protein levels, which increased, however, upon high glucose stimu-
lation [116]. More recently, Lee et al. report that Klotho mRNA expres-
sion is not found in native porcine fetal fibroblasts [117]. On the other
hand, Liang et al. report Klotho immunostaining in tenocytes [118]
and multiple authors detect immunoreactivity in human skin fibro-
blasts [119,120], MRC5 cells [121], and lung fibroblast cell line WI-38
[122]. It is difficult to place these findings in a proper context. While
Azuma et al. used both renal cells as a positive control and antibody
KM2076 to detect Klotho [114], which is the most frequently used and
best-validated antibody for human Klotho, Liang et al. do not indicate
which antibody they used [118], De Oliveira et al. do not indicate
what size their detected protein is [121], and three other studies de-
scribe smaller proteins of 64 and 116 kDa [119,120,122]. Markiewicz
et al. even report Klotho mRNA expression about two-fold higher than
β2-microglobulin mRNA expression [120]. While it is certainly possible
that Klotho is expressed in some form or at a low level in fibroblasts, or
in some specialized types of fibroblast-like cells but not in others, there
is currently no solid evidence of fibroblast Klotho expression. In any
case, with regard to renal fibroblasts, it is difficult to envision a role for
fibroblast Klotho in inhibiting renal fibrosis, also because the Klotho ex-
pression pattern in the kidney has been studied extensively and no au-
thors have ever reported positive staining in interstitial fibroblasts (see
Fig. 1B). Future studies should be performed to elucidate this issue, ide-
ally aided by validated antibodies, in situ hybridization, and knockout
tissue.

Effects of Klotho itself onfibroblasts have also been investigated only
sporadically. Markiewicz et al. describe that Klotho treatment inhibited
dermal fibroblast migration, while silencing of Klotho promoted it
[120]. DeOliveira et al. describe that Klotho knockdown inhibited prolif-
eration of fibroblasts, which appeared to be due to an increase in p53-
mediated senescence [121]. Klotho overexpression was found to de-
crease IL-6 production in mouse embryonic fibroblasts isolated from
both WT mice and kl/kl mice [122]. The fibroblasts from kl/kl mice
displayed an exaggerated IL-6 production compared to the WT fibro-
blasts, although Klotho overexpression essentially brought the IL-6
level back toWT levels. Furthermore, IL-6 production in kl/klmouse em-
bryonic fibroblasts was decreased after silencing of RIG-I. It was coined
that a direct interaction between RIG-I and an intracellularly expressed
KL1 domain in endothelial cells prevents RIG-I-mediated inflammation,
although it was not further substantiated whether this is the case in fi-
broblasts and whether an intracellular Klotho protein physiologically
performs this function [122]. In renal interstitial fibroblasts, Klotho
was found to revert the high-glucose induced expression of TGFβRII,
at least relative to TGFβRI, preventing downstream Smad2/3 phosphor-
ylation [116]. High-glucose-induced p38 and ERK1/2 phosphorylation
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were inhibited as well, and ultimately this resulted in a decrease in
high-glucose-induced cell hypertrophy and fibronectin expression. In
porcine fibroblasts, transgenic Klotho overexpression increased IGF1
mRNA expression, as well as expression of anti-oxidant defense factors
FOXO1, Mn-SOD, and catalase [117]. Expression of p53 and p16, genes
encoding proteins that promote cellular senescence, caspase 3, and
DNA methyltransferases was decreased. Interestingly, using the nuclei
of these transgenic fibroblasts increased blastocyst formation, possibly
pointing towards a better cellular health resulting in improved survival.

In general, however, not many studies have addressed the effects of
Klothoonfibroblasts in terms of proliferation,migration, differentiation,
and synthesis of extracellularmatrix. A study by Liu et al. founddifferen-
tial effects depending on whether cardiac fibroblasts were treated with
the 130 kDa Klotho protein, leading to higher collagen-I and αSMA ex-
pression, ERK phosphorylation, and proliferation, or whether cells were
treated with KL1, leading to a decrease in proliferation and collagen-I
production. While it is possible that different Klotho proteins exert dif-
ferent effects, Hu et al. investigated neonatal cardiac fibroblasts and did
find that Klotho treatment (the 130 kDa protein) inhibited TGFβ1-in-
duced CTGF expression, Ang-II-induced collagen-I expression, and
phosphate-induced expression of both CTGF and collagen-I [9]. Al-
though Smad2/3 phosphorylation was not found to be induced or
inhibited by any treatment in these cells, Klotho did prevent ERK phos-
phorylation induced by either TGFβ1, AngII, or phosphate. Taken to-
gether, these data indicate that Klotho may protect fibroblasts from
senescence and may inhibit the synthesis of extracellular matrix, al-
though some conflicting data complicate the overall picture. As it ap-
pears that Klotho can inhibit the pathological de-differentiation of
vascular smoothmuscle cells [20], and prevent epithelial-to-mesenchy-
mal transition of renal HK-2 cells [41], a central question for fibroblast
research remains what the effect of Klotho is on fibroblast differentia-
tion to myofibroblasts, as well as on subsequent ECM synthesis.

5. Klotho in cancer

When it was found that Klotho extends lifespan at least in part by
inhibiting IGF1/insulin signaling, it was quickly hypothesized that
Klothomay have anti-tumor effects [2,123]. Not long after, experiments
were performed that supported anti-tumor effects by Klotho through
targeting of IGF1/insulin signaling as well as other oncogenic pathways
[40]. As many of the pathways addressed in the context of fibrosis are
also relevant in cancer biology, it is of particular interest to discuss the
effects of Klotho on tumors in this review. It should be noted that
Klotho−/− mice are not known to develop tumors, although a potential
increased propensity to develop cancer might be obfuscated by their
short lifespan. Notably, Klotho+/− mice are also not known to develop
tumors spontaneously despite their near-normal lifespan. An interest-
ing relationship to mention is the one between p16Ink4a, a well-
established tumor suppressor that induces cellular senescence, and
Klotho, which is down-regulated by the former [82].

5.1. Klotho expression in tumors

It should be noted that Klotho expression is generally considered to
be extremely low in most tissues (aside from the kidney, parathyroid
gland, and choroid plexus), so any biological relevance of any further
down-regulation, if established, may indicate that our current views
on Klotho expression levels require some thorough evaluation. On the
other hand, it should be noted that different anti-Klotho antibodies
are known to yield discrepant results. This is likely due to unspecific an-
tigen binding, which may produce both false-positive and false-nega-
tive results [98]. As a general rule, though, the Klotho promoter is
hypermethylated in tumor tissue andKlotho expression is consequently
decreased. This was first demonstrated by Lee et al. who showed that
the Klotho promoter is frequently hypermethylated in cervical carcino-
ma [124]. This was later also shown to be the case in colorectal

carcinoma [125–127], gastric carcinoma [128,129], mamma carcinoma
[130–132], hepatocellular carcinoma [133], pancreatic adenocarcinoma
[134], and even chordoma [135]. Klotho expression is also silenced by
histone deacetylation in various tumors [124]. As a result, Klotho gene
and protein expression have been shown to be decreased in esophageal
carcinoma [136], gastric carcinoma [128,137], pancreatic carcinoma [42,
134], breast cancer [40,130,132], colorectal carcinoma [125,138], cervi-
cal carcinoma [139,140], hepatocellular carcinoma [133,141], renal cell
carcinoma [142], ovarian carcinoma [143,144], glial tumors [145],
urothelial carcinoma [146], oral squamous cell carcinoma [147], and dif-
fuse large B cell lymphoma (DLBCL) [148]. In contrast, Klotho expres-
sion may be increased in multiple myeloma [149]. Taken together, the
available data indicate that Klotho is nearly universally silenced upon
oncogenesis. Of note is the observation that it was generally found to
be the case that residual Klotho expression, however little, was still as-
sociated with a better outcome [128,133,134,136–138,141–143,148,
150–152].

5.2. Klotho effects on cancer cells in vitro and in vivo

As stated, Klotho inhibits many pathways involved in carcinogene-
sis, including IGF1R (with downstream PI3K, Akt, and mTOR signaling),
Wnt/β-catenin signaling, FGF2 signaling (generally affecting ERK1/2
signaling), and TGFβ1 and downstream Smad2/3 signaling. Generally,
in vitro anti-tumor effects were found to include the induction of apo-
ptosis [125,128,129,141,145,148,153–158], inhibition of proliferation
[40,42,43,124,125,128,138,141,143–145,148,153–159], induction of au-
tophagy [129,159], inhibition of autophagy [155], and inhibition of mi-
gration [37,138,139,142,154,159,160]. Klotho effects were found to be
mediated by inhibition of activation of IGF1R (and/or downstream
PI3K and Akt signaling) [40,42,43,129,138,142,144,148,153,157,159],
ERK1/2 signaling [42,128], Wnt/β-catenin signaling [124,139,141,154,
160,161], and TGFβ1 signaling [37]. Notably, the EGF pathway has not
been found to be modulated by Klotho [40], although Klotho-deficient
mice are known to have low EGF levels [111]. Interestingly, Klotho
treatment appears to interact favourably with cytostatics in resistant
cell lines [42,144,155,157].

In vivo, it was shown that Klotho significantly inhibited tumor
growth and/or improved survival in athymic mice xenotransplanted
with lung cancer [37], pancreatic carcinoma [42], colorectal carcinoma
[162], breast cancer [43], hepatocellular carcinoma [141], ovarian carci-
noma [143], melanoma [161], and diffuse large B cell lymphoma [148].
These studies have used different approaches to Klotho treatment.
While the pancreatic carcinoma, breast cancer, hepatocellular carcino-
ma, andmelanoma experimentswere performedwith recombinant sol-
uble Klotho treatment, Klotho was overexpressed in the models of
colorectal and ovarian carcinoma. The DLBCL experiments did both
and the lung cancer experiments by Doi et al. also employed both ap-
proaches, in addition to injecting lung cancer cells into WT and
Klotho-overexpressing mice, all of which resulted in fewer metastases
after exposure to higher Klotho levels, likely through an effect on the
TGFβ1 pathway [37]. Additionally, an in vivo study in which Klotho
was down-regulated in melanoma cells using a short hairpin RNA
showed that mortality and tumor growth were increased [152]. Finally,
a similar approach using short hairpin RNAs against Klotho in cisplatin-
resistant lung cancer cells also lead to an increase in tumor volume, fur-
ther establishing a role for Klotho as a tumor suppressor [157]. The
available data indicate that Klotho acts as a universal tumor suppressor
and that there may be a role for Klotho in the treatment of cancers.

6. Strategies for Klotho treatment

Currently, there are no Klotho-based treatments available, although
a number of commonly used compounds do either directly up-regulate
Klotho in vitro, like PPARγ agonists [73,163], vitamin D [164], testoster-
one [165], and resveratrol [166], or otherwise appear to up-regulate or
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at least de-repress down-regulation of Klotho in vivo, like ACE inhibi-
tors/AT1R blockers [79,167], statins [64], and N-acetylcysteine [63]. Es-
tablishing higher renal Klotho expression levels or systemic soluble
Klotho levels could therefore be achieved by treatment with these com-
pounds. However, in the presence of factors that actively down-regulate
Klotho, like uremic toxins [69], or in case of advanced renal disease, in
which tubular cells may no longer possess the ability to express Klotho,
the effect of up-regulating endogenous Klotho levelsmay bemild to ab-
sent. It is therefore interesting, given the established in vivo effects of
soluble Klotho protein and for the potential treatment of ESRD patients,
to also explore the possibilities for exogenous soluble Klotho treatment.

A few things should be noted onKlotho-based treatments. First of all,
if the goal is to maintain Klotho levels at a physiological level, which is
expected to confer a certain degree of protection compared to disease
states in which Klotho is either locally or systemically down-regulated,
then there are currently no indications that such a treatment would be
expected to cause undesirable or adverse side effects. Raising endoge-
nous Klotho levels to about twice the normal level, as present in the
transgenic Klotho-overexpressing mouse, also does not appear to in-
duce unwanted side effects. Given the general beneficial effects of
high circulating Klotho levels on the entire organism, it could be argued
that the full protein with all of its functions intact would be suitable for

Fig. 3. Direct Klotho-mediated molecular mechanisms of action. Klotho (depicted in the centre) directly interacts with other pathways. Clockwise from the bottom panel: (A) on renal
distal tubule epithelial cells, membrane-bound Klotho binds to fibroblast growth factor receptor 1c (FGFR1c) to form a ternary complex with FGF23, facilitating phosphaturia in the
proximal tubule. Binding of Klotho to FGFR1c reduces the affinity for FGF2, inhibiting FGF2 signaling. (B) On endothelial cells, the KL2 domain binds to Ig6 and 7 from vascular
endothelial growth factor receptor 2 (VEGFR2) and to the fifth loop of transient receptor potential cation channel, subfamily C, member 1 (TRPC1), forming a complex that is taken up
by endocytosis upon stimulation by VEGF, protecting the cell from calcium-induced μ-calpain overactivation. (C) On distal tubule epithelium in the kidney, Klotho enzymatically
modifies the N-linked glycan on transient receptor potential cation channel, subfamily V, member 5 (TRPV5), which allows stabilization of TRPV5 molecules by galectin-3 on the cell
membrane, promoting calcium reabsorption from the urine. Klotho acts as a sialidase or β-glucoronidase on other ion channels and transporters as well, including sodium and
phosphate transporter NaPi2a and potassium channel ROMK1. (D) The KL1 domain is capable of sequestering soluble Wnt molecules, preventing Wnt signaling. (E) The KL1 domain
also inhibits PI3K signaling, either by inhibiting insulin-like growth factor 1 (IGF1) signaling by binding to IGFR1, or by binding monosialogangliosides on lipid rafts in the cellular
membrane. Inhibition of downstream PI3K and Akt signaling will prevent exocytosis of transient receptor potential cation channel, subfamily C, member 6 (TRPC6) on cardiomyocytes
and podocytes. (F) Soluble Klotho binds to transforming growth factor β1 receptor II (TGFβRII), reducing the affinity for TGFβ1 and preventing the heterodimerization of TGFβRII and
TGFβRI, thereby inhibiting downstream Smad2/3 signaling. Abbreviations: FGF: fibroblast growth factor; FGFR: fibroblast growth factor receptor; IGF1: insulin-like growth factor 1;
IGFR: insulin-like growth factor receptor; LRP6: low-density lipoprotein receptor-related protein 6; mKlotho: membrane-bound Klotho; PI3K: phospho-inositide 3-kinase; sKlotho:
soluble Klotho; TGFβ1: transforming growth factor β1; TGFβR – transforming growth factor β receptor; TRPC1: transient receptor potential cation channel subfamily C, member 1;
TRPC6: transient receptor potential cation channel, subfamily C, member 6; TRPV5: transient receptor potential cation channel, subfamily V, member 5; VEGF: vascular endothelial
growth factor; VEGFR2: vascular endothelial growth factor receptor 1; Wnt: wingless-related integration site.
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treatment. However, if Klotho levels are increased to an even higher
level, a number of side effects can be expected, including hypotension,
hypophosphatemia [168,169], hypocalcemia [168], and insulin resis-
tance that may start to affect glucose levels [2]. Therefore, it may be
worthwhile to discuss whether the different Klotho effects can be delin-
eated, so that side effects with regard to phosphate homeostasis can be
prevented while still affecting, for example, calcium homeostasis or
Wnt signaling, or so that a higher level of Klothowith specific biological
activity in a certain pathway can be reached without the occurrence of
side effects. Finally, we will discuss the targeted treatment strategies
that have been employed experimentally using Klotho, which could en-
able us to reach an even higher Klotho level locally, if that is biologically
desirable and effective. These approaches could be coupled with modi-
fied Klotho protein treatment acting only on certain pathways, if the bi-
ological effect in a certain tissue can then be maximized [1,25,26] [27–
29] [30–32] [33,34] [27,28]..

6.1. Structure-function analyses

As Klotho effects can conceivably be exerted by membrane-bound
Klotho, full-length soluble Klotho, or the individual KL1 or KL2 domains,
a few groups have tried to pinpoint which Klotho protein or which do-
main of the Klotho protein is necessary in exerting different functions.
FGF23 signaling, for instance, has only been found to occur in the pres-
ence of membrane-bound Klotho [109], which is therefore likely the
protein that affects phosphate homeostasis the most, although soluble
Klotho is also capable of inducing phosphaturia independently of
FGF23 signaling, by interacting with NaPi2a directly after transcytosis
through proximal tubular epithelium [170,171].Mutagenesis studies in-
dicate that the KL2 domain of soluble Klotho is necessary for binding to
TRPC1 and VEGFR2 on endothelial cells, enabling VEGF-mediated
endocytocis of TRPC1 and preventing calcium-dependent μ-calpain
overactivation [172]. Either KL1, KL2, or the full soluble protein is capa-
ble of enzymaticallymodifying sugarmoieties on TRPV5 [173] or NaPi2a
[171], as corroborated by blocking the KL1 or KL2 domain using KL1- or
KL2-specific antibodies. Further mutagenesis studies have indicated
that the KL1 domain is sufficient for blocking Wnt signaling [38] as
well as for inhibition of the PI3K/Akt signaling pathway by binding of
Klotho to lipid raft-associated α2,3-siallyllactose, for which Arg148,
His246, and the 465EWHR468 motif in the KL1 domain are likely particu-
larly important [174]. KL1 is also sufficient for the exertion of anti-tumor
effects, attributed to inhibition of IGF1 signaling [42,43]. As demonstrat-
ed specifically by Abramovitz et al., treatment with high levels of full-
length Klotho or KL1 protein both resulted in a reduction in tumor
size, but KL1 did not affect phosphate levels, indicating that it may in-
deed be possible to extricate a given Klotho function from the rest of
the functions and that this can have biologically relevant effects. If
such advancements are to be explored in therapeutic strategies, it will
be necessary to gain a better understanding of the exact molecular
mechanisms through which Klotho affects other pathways, both the
molecular interactions that are currently known and any that are cur-
rently unknown. Elucidation of the tertiary structure of Klotho proteins
using X ray crystallography, in silico analyses, such as recently per-
formed by Mirza et al. for Klotho/Wnt interactions [175], andmutagen-
esis studies will be crucial in this effort. It may be possible, though, to
develop a Klotho-derived peptide or protein that exhibits all of the
anti-fibrotic effects of Klotho and can be administered at a high dose if
pathways that would have resulted in side effects remain unaffected.
The known direct interactions between Klotho, or specific domains of
the Klotho protein, and target proteins are summarized in Fig. 3.

6.2. Klotho treatment strategies

Devising a strategy to deliver Klotho specifically to certain cells or a
certain tissue, thereby effectively allowing for higher dosing locally and
preventing systemic side effects, is an attractive option. A couple of

divergent approaches have been tried – although none in a model of fi-
brosis. For example, Varshney et al. overexpressed the KL1 domain in
stem cells and injected these cells inmonocrotaline-treated rats that de-
velop pulmonary hypertension [176]. While the stem cells themselves
(in the control condition) did not have an effect on the development
of pulmonary hypertension, they did home to the lung and engraft.
Klotho overexpression in these cells resulted in a marked reduction in
pulmonary vascular dysfunction, arterial remodelling, and cardiac pa-
rameters of right ventricular overload. A different approach may be to
overexpress Klotho in a specific cell type, as Lin et al. have done in pan-
creatic β cells, using the β cell-specific pre-pro-insulin II promoter,
which inhibited the development of diabetes [23,24]. Such an approach,
targeting myofibroblasts, may also result in higher local Klotho levels
and may then similarly inhibit the development of fibrosis.

Klotho protein administration in the experimental setting is typically
done intraperitoneally. Hu et al. recently showed that treating CKD mice
with Klotho protein via osmotic mini-pumps, which were changed
monthly, still resulted inmarked amelioration of CKD and related pathol-
ogies [8]. Of note is the observation that recombinantKlothoprotein is ap-
parently stable enough, or its efficacy potent enough, to have a
therapeutically relevant effect even if renewed onlymonthly. Thisfinding
opens up a lot of treatment possibilities with regard to slow release de-
pots of recombinant Klotho protein that can be injected or implanted. A
similar study, by Cheng et al., employedKlotho-loaded chistosan/β-cyclo-
dextrin nanoparticles to coat decellularized arterial grafts and found that
9/10 Klotho-treated grafts remained patent after 6months, in addition to
having developed a normal arterial histology, endothelial lining, and
blood flow rate [177]. Comparatively, 9/10 control grafts were no longer
patent after 6 months. This study illustrates both the substantial clinical
potential of a Klotho-based treatment and the tolerance of a microenvi-
ronment to high levels of Klotho. All in all, there might conceivably be a
role for Klotho delivery using various strategies and in various situations
as these studiesmay just be setting the stage for investigations to come in
this field.

A number of technical aspects is yet to be addressed, before clinical
testing of Klotho treatment can commence. First of all, there is an urgent
need in the field for a validated ELISA [46,178–181]. A focus of the devel-
opment of an ELISAwould also have to bewhichKlotho protein should be
and are detected, since the current ELISA assays are thought to detect only
full-length soluble Klotho. Second of all, it has proven challenging to pro-
duce recombinant Klotho with consistent biological effects. However, if
these issues are overcome, it could be envisioned for recombinant Klotho
treatment to be incorporated into clinical practice as has been the case
with other recombinant proteins. For instance, recombinant Klotho treat-
ment could even be combinedwith daily subcutaneous insulin injections,
aiming to protect against diabetic nephropathy, or with regular dialysis-
related erythropoietin treatments, aiming to relieve the effects of
systemic Klotho deficiency in ESRD. As discussed, the benefits and clinical
applications of designed Klotho-based treatments may even stretch fur-
ther, once scientific progress enables us to devise them for specific
purposes.

7. Conclusion

Klotho is a kidney-derived endogenous anti-fibrotic agent. Klotho
deficiency results in, or at least exacerbates, the development of fibrosis
in the kidney, in the heart, in arteries, in the aortic valve, in the lungs,
and negatively affects wound healing. Conversely, Klotho overexpres-
sion protects against the development of fibrosis in kidney and heart.
These effects are mediated by soluble Klotho, which directly inhibits
TGFβ1, Wnt, and FGF2 signaling. Inhibition of PI3K-induced exocytocis
of TRPC6 may also be an important factor in preventing renal fibrosis.
Interacting with these pathways renders Klotho a tumor suppressor as
well. The KL1 domain appears to be integral to most anti-fibrotic func-
tions. Further study on the molecular mechanisms of Klotho-mediated
actions will enable designed, possibly KL1-based treatment strategies
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that target certain pathways but not others. Klotho-based treatment
strategies are a very promising possibility, both for fibrosis and cancer.
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