1,812 research outputs found

    Consensus Statement on Bone Conduction Devices and Active Middle Ear Implants in Conductive and Mixed Hearing Loss

    Full text link
    Nowadays, several options are available to treat patients with conductive or mixed hearing loss. Whenever surgical intervention is not possible or contra-indicated, and amplification by a conventional hearing device (e.g., behind-the-ear device) is not feasible, then implantable hearing devices are an indispensable next option. Implantable bone-conduction devices and middle-ear implants have advantages but also limitations concerning complexity/invasiveness of the surgery, medical complications, and effectiveness. To counsel the patient, the clinician should have a good overview of the options with regard to safety and reliability as well as unequivocal technical performance data. The present consensus document is the outcome of an extensive iterative process including ENT specialists, audiologists, health-policy scientists, and representatives/technicians of the main companies in this field. This document should provide a first framework for procedures and technical characterization to enhance effective communication between these stakeholders, improving health care

    Indication of direct acoustical cochlea stimulation in comparison to cochlear implants

    Get PDF
    AbstractThe new implantable hearing system Codacs™ was designed to close the treatment gap between active middle ear implants and cochlear implants in cases of severe-to-profound mixed hearing loss. The Codacs™ actuator is attached to conventional stapes prosthesis during the implantation and thereby provides acoustical stimulation through a stapedotomy to the cochlea. Cochlear implants (CIs) on the other hand are an established treatment option for profoundly deaf patients including mixed hearing losses that are possible candidates for the Codacs™.In this retrospective study, we compared the clinical outcome of 25 patients with the Codacs™ (≥3 month post-activation) to 54 CI patients (two years post-activation) with comparable pre-operative bone conduction (BC) thresholds that were potential candidates for both categories of devices. The word recognition score (Freiburg monosyllables test) in quiet was significantly (p < 0.05) better in the Codacs™ than in the corresponding CI patients for average pre-operative bone conduction below 60 dB HL and equal in patients with a pre-operative BC PTA between 60 and 70 dB HL. Speech in noise intelligibility (HSM sentences test at +10 dB SNR) was significantly (p < 0.001) better in Codacs™ (80% median) than in CI patients (25% median) in all tested groups.Our results indicate for patients with sufficient cochlear reserve that speech intelligibility in noise with the Codacs™ hearing implant is significantly better than with a CI. Further, results in Codacs™ were better predictable, encouraging the extension of the indication to patients with less cochlear reserve than reported here

    Exchange-enhanced Ultrastrong Magnon-Magnon Coupling in a Compensated Ferrimagnet

    Full text link
    The ultrastrong coupling of (quasi-)particles has gained considerable attention due to its application potential and richness of the underlying physics. Coupling phenomena arising due to electromagnetic interactions are well explored. In magnetically ordered systems, the quantum-mechanical exchange-interaction should furthermore enable a fundamentally different coupling mechanism. Here, we report the observation of ultrastrong intralayer exchange-enhanced magnon-magnon coupling in a compensated ferrimagnet. We experimentally study the spin dynamics in a gadolinium iron garnet single crystal using broadband ferromagnetic resonance. Close to the ferrimagnetic compensation temperature, we observe ultrastrong coupling of clockwise and anticlockwise magnon modes. The magnon-magnon coupling strength reaches more than 30% of the mode frequency and can be tuned by varying the direction of the external magnetic field. We theoretically explain the observed phenomenon in terms of an exchange-enhanced mode-coupling mediated by a weak cubic anisotropy

    Signal and response properties indicate an optoacoustic effect underlying the intra-cochlear laser-optical stimulation

    Get PDF
    Optical cochlea stimulation is under investigation as a potential alternative to conventional electric cochlea implants in treatment of sensorineural hearing loss. If direct optical stimulation of spiral ganglion neurons (SGNs) would be feasible, a smaller stimulation volume and, therefore, an improved frequency resolution could be achieved. However, it is unclear whether the mechanism of optical stimulation is based on direct neuronal stimulation or on optoacoustics. Animal studies on hearing vs. deafened guinea pigs already identified the optoacoustic effect as potential mechanism for intra-cochlear optical stimulation. In order to characterize the optoacoustic stimulus more thoroughly the acoustic signal along the beam path of a pulsed laser in water was quantified and compared to the neuronal response properties of hearing guinea pigs stimulated with the same laser parameters. Two pulsed laser systems were used for analyzing the influence of variable pulse duration, pulse energy, pulse peak power and absorption coefficient. Preliminary results of the experiments in water and in vivo suggesta similar dependency of response signals on the applied laser parameters: Both datasets show an onset and offset signal at the beginning and the end of the laser pulse. Further, the resulting signal amplitude depends on the pulse peak power as well as the temporal development of the applied laser pulse. The data indicates the maximum of the first derivative of power as the decisive factor. In conclusion our findings strengthen the hypothesis of optoacoustics as the underlying mechanism for optical stimulation of the cochlea. © SPIE 201
    • …
    corecore