113 research outputs found

    Limits on Clouds and Hazes for the TRAPPIST-1 Planets

    Full text link
    The TRAPPIST-1 planetary system is an excellent candidate for study of the evolution and habitability of M-dwarf planets. Transmission spectroscopy observations performed with the Hubble Space Telescope (HST) suggest the innermost five planets do not possess clear hydrogen atmospheres. Here we reassess these conclusions with recently updated mass constraints and expand the analysis to include limits on metallicity, cloud top pressure, and the strength of haze scattering. We connect recent laboratory results of particle size and production rate for exoplanet hazes to a one-dimensional atmospheric model for TRAPPIST-1 transmission spectra. Doing so, we obtain a physically-based estimate of haze scattering cross sections. We find haze scattering cross sections on the order of 1e-26 to 1e-19 cm squared are needed in hydrogen-rich atmospheres for TRAPPIST-1 d, e, and f to match the HST data. For TRAPPIST-1 g, we cannot rule out a clear hydrogen-rich atmosphere. We also modeled the effects an opaque cloud deck and substantial heavy element content have on the transmission spectra. We determine that hydrogen-rich atmospheres with high altitude clouds, at pressures of 12mbar and lower, are consistent with the HST observations for TRAPPIST-1 d and e. For TRAPPIST-1 f and g, we cannot rule out clear hydrogen-rich cases to high confidence. We demonstrate that metallicities of at least 60xsolar with tropospheric (0.1 bar) clouds agree with observations. Additionally, we provide estimates of the precision necessary for future observations to disentangle degeneracies in cloud top pressure and metallicity. Our results suggest secondary, volatile-rich atmospheres for the outer TRAPPIST-1 planets d, e, and f.Comment: 15 pages, 3 figures, 2 tables, accepted in the Astronomical Journa

    High temperature condensate clouds in super-hot Jupiter atmospheres

    Full text link
    Deciphering the role of clouds is central to our understanding of exoplanet atmospheres, as they have a direct impact on the temperature and pressure structure, and observational properties of the planet. Super-hot Jupiters occupy a temperature regime similar to low mass M-dwarfs, where minimal cloud condensation is expected. However, observations of exoplanets such as WASP-12b (Teq ~ 2500 K) result in a transmission spectrum indicative of a cloudy atmosphere. We re-examine the temperature and pressure space occupied by these super-hot Jupiter atmospheres, to explore the role of the initial Al- and Ti-bearing condensates as the main source of cloud material. Due to the high temperatures a majority of the more common refractory material is not depleted into deeper layers and would remain in the vapor phase. The lack of depletion into deeper layers means that these materials with relatively low cloud masses can become significant absorbers in the upper atmosphere. We provide condensation curves for the initial Al- and Ti-bearing condensates that may be used to provide quantitative estimates of the effect of metallicity on cloud masses, as planets with metal-rich hosts potentially form more opaque clouds because more mass is available for condensation. Increased metallicity also pushes the point of condensation to hotter, deeper layers in the planetary atmosphere further increasing the density of the cloud. We suggest that planets around metal-rich hosts are more likely to have thick refractory clouds, and discuss the implication on the observed spectra of WASP-12b.Comment: Accepted for publication in MNRAS, 10 pages, 1 table, 5 figure

    A comparative study of WASP-67b and HAT-P-38b from WFC3 data

    Get PDF
    Atmospheric temperature and planetary gravity are thought to be the main parameters affecting cloud formation in giant exoplanet atmospheres. Recent attempts to understand cloud formation have explored wide regions of the equilibrium temperature-gravity parameter space. In this study, we instead compare the case of two giant planets with nearly identical equilibrium temperature (TeqT_\mathrm{eq} ∼1050 K\sim 1050 \, \mathrm{K}) and gravity (g∼10 m s−1)g \sim 10 \, \mathrm{m \, s}^{-1}). During HSTHST Cycle 23, we collected WFC3/G141 observations of the two planets, WASP-67 b and HAT-P-38 b. HAT-P-38 b, with mass 0.42 MJ_\mathrm{J} and radius 1.4 RJR_\mathrm{J}, exhibits a relatively clear atmosphere with a clear detection of water. We refine the orbital period of this planet with new observations, obtaining P=4.6403294±0.0000055 dP = 4.6403294 \pm 0.0000055 \, \mathrm{d}. WASP-67 b, with mass 0.27 MJ_\mathrm{J} and radius 0.83 RJR_\mathrm{J}, shows a more muted water absorption feature than that of HAT-P-38 b, indicating either a higher cloud deck in the atmosphere or a more metal-rich composition. The difference in the spectra supports the hypothesis that giant exoplanet atmospheres carry traces of their formation history. Future observations in the visible and mid-infrared are needed to probe the aerosol properties and constrain the evolutionary scenario of these planets.Comment: 16 pages, 17 figures, 8 tables, accepted for publication in The Astronomical Journa

    Importance of Sample Selection in Exoplanet Atmosphere Population Studies

    Full text link
    Understanding planet formation requires robust population studies, which are designed to reveal trends in planet properties. In this work, we aim to determine if different methods for selecting populations of exoplanets for atmospheric characterization with JWST could influence population-level inferences. We generate three hypothetical surveys of super-Earths/sub-Neptunes, each spanning a similar radius-insolation flux space. The survey samples are constructed based on three different selection criteria (evenly-spaced-by-eye, binned, and a quantitative selection function). Using an injection-recovery technique, we test how robustly individual-planet atmospheric parameters and population-level parameters can be retrieved. We find that all three survey designs result in equally suitable targets for individual atmospheric characterization, but not equally suitable targets for constraining population parameters. Only samples constructed with a quantitative method or that are sufficiently evenly-spaced-by-eye result in robust population parameter constraints. Furthermore, we find that the sample with the best targets for individual atmospheric study does not necessarily result in the best constrained population parameters. The method of sample selection must be considered. We also find that there may be large variability in population-level results with a sample that is small enough to fit in a single JWST cycle (∼\sim12 planets), suggesting that the most successful population-level analyses will be multi-cycle. Lastly, we infer that our exploration of sample selection is limited by the small number of transiting planets with measured masses around bright stars. Our results can guide future development of programs that aim to determine underlying trends in exoplanet atmospheric properties and, by extension, formation and evolution processes.Comment: 16 pages, 7 figures, accepted Ap

    Optical to near-infrared transmission spectrum of the warm sub-Saturn HAT-P-12b

    Get PDF
    We present the transmission spectrum of HAT-P-12b through a joint analysis of data obtained from the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) and Wide Field Camera 3 (WFC3) and Spitzer, covering the wavelength range 0.3-5.0 μ\mum. We detect a muted water vapor absorption feature at 1.4 μ\mum attenuated by clouds, as well as a Rayleigh scattering slope in the optical indicative of small particles. We interpret the transmission spectrum using both the state-of-the-art atmospheric retrieval code SCARLET and the aerosol microphysics model CARMA. These models indicate that the atmosphere of HAT-P-12b is consistent with a broad range of metallicities between several tens to a few hundred times solar, a roughly solar C/O ratio, and moderately efficient vertical mixing. Cloud models that include condensate clouds do not readily generate the sub-micron particles necessary to reproduce the observed Rayleigh scattering slope, while models that incorporate photochemical hazes composed of soot or tholins are able to match the full transmission spectrum. From a complementary analysis of secondary eclipses by Spitzer, we obtain measured depths of 0.042%±0.013%0.042\%\pm0.013\% and 0.045%±0.018%0.045\%\pm0.018\% at 3.6 and 4.5 μ\mum, respectively, which are consistent with a blackbody temperature of 890−70+60890^{+60}_{-70} K and indicate efficient day-night heat recirculation. HAT-P-12b joins the growing number of well-characterized warm planets that underscore the importance of clouds and hazes in our understanding of exoplanet atmospheres.Comment: 25 pages, 19 figures, accepted for publication in AJ, updated with proof correction

    A Library of Self-Consistent Simulated Exoplanet Atmospheres

    Get PDF
    We present a publicly available library of model atmospheres with radiative-convective equilibrium Pressure-Temperature (PP-TT) profiles fully consistent with equilibrium chemical abundances, and the corresponding emission and transmission spectrum with R∼\sim5000 at 0.2 μ\mum decreasing to R∼\sim35 at 30 μ\mum, for 89 hot Jupiter exoplanets, for four re-circulation factors, six metallicities and six C/O ratios. We find the choice of condensation process (local/rainout) alters the PP-TT profile and thereby the spectrum substantially, potentially detectable by JWST. We find H−^- opacity can contribute to form a strong temperature inversion in ultra-hot Jupiters for C/O ratios ≥\geq 1 and can make transmission spectra features flat in the optical, alongside altering the entire emission spectra. We highlight how adopting different model choices such as thermal ionisation, opacities, line-wing profiles and the methodology of varying the C/O ratio, effects the PP-TT structure and the spectrum. We show the role of Fe opacity to form primary/secondary inversion in the atmosphere. We use WASP-17b and WASP-121b as test cases to demonstrate the effect of grid parameters across their full range, while highlighting some important findings, concerning the overall atmospheric structure, chemical transition regimes and their observables. Finally, we apply this library to the current transmission and emission spectra observations of WASP-121b, which shows H2_2O and tentative evidence for VO at the limb, and H2_2O emission feature indicative of inversion on the dayside, with very low energy redistribution, thereby demonstrating the applicability of library for planning and interpreting observations of transmission and emission spectrum.Comment: 26 pages, 19 figures in the main paper. 13 pages, 6 figures, 3 tables in the supplementary material attached with the main paper here. Accepted for Publication in MNRAS. Full grid of model P-T profiles, chemical abundances, transmission and emission spectra, contribution functions are available here, https://drive.google.com/drive/folders/1zCCe6HICuK2nLgnYJFal7W4lyunjU4J

    Understanding Exoplanet Atmospheres with UV Observations I: NUV and Blue/Optical

    Get PDF
    Much of the focus of exoplanet atmosphere analysis in the coming decade will be atinfrared wavelengths, with the planned launches of the James Webb Space Telescope (JWST) and the Wide-Field Infrared Survey Telescope (WFIRST). However, without being placed in the context of broader wavelength coverage, especially in the optical and ultraviolet, infrared observations produce an incomplete picture of exoplanet atmospheres. Scattering information encoded in blue optical and near-UV observations can help determine whether muted spectral features observed in the infrared are due to a hazy/cloudy atmosphere, or a clear atmosphere with a higher mean molecular weight. UV observations can identify atmospheric escape and mass loss from exoplanet atmospheres, providing a greater understanding of the atmospheric evolution of exoplanets, along with composition information from above the cloud deck. In this white paper we focus on the science case for exoplanet observations in the near-UV; an accompanying white paper led by Eric Lopez will focus on the science case in the far-UV

    Starspot occultations in infrared transit spectroscopy: the case of WASP-52b

    Get PDF
    Stellar activity is one of the main obstacles to high-precision exoplanet observations and has motivated extensive studies in detection and characterization problems. Most efforts focused on unocculted starspots in optical transit spectrophotometry, while the impact of starspot crossings is assumed to be negligible in the near-infrared. Here, we present \textit{HST}/WFC3 transit observations of the active star WASP-52, hosting an inflated hot Jupiter, which present a possible starspot occultation signal. By using this data set as a benchmark, we investigated whether the masking of the transit profile distortion or modeling it with both a starspot model and a Gaussian process affects the shape of the transmission spectrum. Different methods produced spectra with the same shape and a robust detection of water vapor, and with ≲1σ\lesssim 1 \sigma different reference radii for the planet. The solutions of all methods are in agreement and reached a similar level of precision. Our WFC3 light curve of WASP-52b hints that starspot crossings might become more problematic with \textit{JWST}'s higher sensitivity and complete coverage of the transit profile.Comment: 15 pages, 15 figures, 5 tables, data available onlin

    The Hubble PanCET Program:Emission Spectrum of Hot Jupiter HAT-P-41b

    Get PDF
    We present the most complete emission spectrum for inflated hot Jupiter HAT-P-41b combining new HST WFC/G141 spectrum from the Hubble Panchromatic Comparative Exoplanet Treasury (PanCET) program with archival Spitzer eclipse observations. We found a near blackbody-like emission spectrum which is best fitted with an isothermal temperature-pressure (TP) profile that agrees well with the dayside heat redistribution scenario assuming zero Bond albedo. The non-inverted TP profile is consistent with the non-detection of NUV/optical absorbers in the transit spectra. We do not find any evidence for significant H−^- opacity nor a metal-rich atmosphere. HAT-P-41b is an ideal target that sits in the transitioning parameter space between hot and ultra-hot Jupiters, and future JWST observations will help us to better constrain the thermal structure and chemical composition.Comment: Accepted for publication in A
    • …
    corecore