2 research outputs found

    Synthesis and Reactivity of Titanium Hydrazido Complexes Supported by Diamido-Ether Ligands

    No full text
    The synthesis and reactivity of titanium diphenyl hydrazido(2−) complexes supported by the diamido-ether ligands O­(2-C<sub>6</sub>H<sub>4</sub>NSiMe<sub>3</sub>)<sub>2</sub> (N<sub>2</sub><sup>Ar</sup>O) and O­(CH<sub>2</sub>CH<sub>2</sub>NSiMe<sub>3</sub>)<sub>2</sub> (N<sub>2</sub>O) are described. Reaction of Li<sub>2</sub>N<sub>2</sub><sup>Ar</sup>O or Li<sub>2</sub>N<sub>2</sub>O with Ti­(NNPh<sub>2</sub>)­Cl<sub>2</sub>(py)<sub>3</sub> afforded Ti­(N<sub>2</sub><sup>Ar</sup>O)­(NNPh<sub>2</sub>)­(py)<sub>2</sub> (<b>14</b>) or Ti­(N<sub>2</sub>O)­(NNPh<sub>2</sub>)­(py)<sub>2</sub> (<b>15</b>) with κ<sup>3</sup>-<i>mer</i>-bound diamido-ether ligands. Reaction with <sup>t</sup>Bu-bipy (4,4′-di-<i>tert</i>-butyl-2,2′-bipyridyl) or bipy (2,2′-bipyridyl) gave a switch to κ<sup>3</sup>-<i>fac</i>-coordination. Reaction of <b>15</b> with Ar′NCO (Ar′ = 2,6-C<sub>6</sub>H<sub>3</sub><sup>i</sup>Pr<sub>2</sub>) gave Ti­{O­(CH<sub>2</sub>CH<sub>2</sub>NSiMe<sub>3</sub>)­(CH<sub>2</sub>CH<sub>2</sub>NC­(O)­N­(SiMe<sub>3</sub>)­Ar′)}-{N­(NPh<sub>2</sub>)­C­(O)­N­(Ar′)}, in which the substrate has inserted into a Ti–N<sub>amide</sub> bond of N<sub>2</sub>O as well as adding to the TiN<sub>α</sub> multiple bond. With Ar′NCS the [2+2] cycloaddition product Ti­(N<sub>2</sub>O)­{N­(NPh<sub>2</sub>)­C­(NAr′)­S}­(py) was obtained, and with Ar′NCSe a mixture was formed including Ti<sub>2</sub>(N<sub>2</sub>O)<sub>2</sub>(μ-Se)<sub>2</sub>. Both <b>14</b> and <b>15</b> reacted with Ar<sup>Fx</sup>CN (Ar<sup>Fx</sup> = C<sub>6</sub>H<sub>3</sub>F<sub>2</sub> or C<sub>6</sub>F<sub>5</sub>) to give TiN<sub>α</sub> bond insertion products of the type Ti­(L)­{NC­(Ar<sup>Fx</sup>)­NNPh<sub>2</sub>}­(py)<sub>2</sub> (L = N<sub>2</sub><sup>Ar</sup>O or N<sub>2</sub>O) containing hydrazonamide ligands. Reaction of <b>14</b> with XylNC (Xyl = 2,6-C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>) gave only the isonitrile σ-adduct Ti­(N<sub>2</sub><sup>Ar</sup>O)­(NNPh<sub>2</sub>)­(py)­(CNXyl), whereas <b>15</b> underwent N<sub>α</sub>–N<sub>β</sub> bond reductive cleavage with <sup>t</sup>BuNC or XylNC forming Ti­(N<sub>2</sub>O)­(NPh<sub>2</sub>)­(NCN<sup>t</sup>Bu) or Ti­{O­(CH<sub>2</sub>CH<sub>2</sub>NSiMe<sub>3</sub>)­(CH<sub>2</sub>CH<sub>2</sub>NCN­(SiMe<sub>3</sub>)­Xyl)}­(NPh<sub>2</sub>)­(NCNXyl) (<b>27</b>). Both contain metalated carbodiimide ligands, but in <b>27</b> an additional reaction of XylNC with the Ti–N<sub>amide</sub> bond of N<sub>2</sub>O has taken place. Compound <b>15</b> also reacted with a number of internal alkynes RCCR′ (R = R′ = Me or Ph; R = Me, R′ = aryl) to give N<sub>α</sub>–N<sub>β</sub> bond reductive cleavage products of the type Ti­{O­(CH<sub>2</sub>CH<sub>2</sub>NSiMe<sub>3</sub>)­(CH<sub>2</sub>CH<sub>2</sub>NC­(R)­C­(R′)­NSiMe<sub>3</sub>}­(NPh<sub>2</sub>), again involving a reaction of a Ti–N<sub>amide</sub> bond

    MOESM1 of Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment

    No full text
    Additional file 1. Temperature and pressure of major unit operations from Aspen modeling, and the capital scaling factor
    corecore