2 research outputs found

    Identification and characterization of antigen-specific CD4+ T cells targeting renally expressed antigens in human lupus nephritis with two independent methods

    Get PDF
    In the search for anti-renal autoreactivity in human lupus nephritis, we stimulated blood-derived CD4+ T cells from patients with systemic lupus erythematosus with various kidney lysates. Although only minor responses were detectable, these experiments led to the development of a search algorithm that combined autoantibody association with human lupus nephritis and target gene expression in inflamed kidneys. Applying this algorithm, five potential T cell antigens were identified. Blood-derived CD4+ T cells were then stimulated with these antigens. The cells were magnetically enriched prior to measurement with flow cytometry to facilitate the detection of very rare autoantigen-specific cells. The detected responses were dominated by IFN-γ-producing CD4+ T cells. Additionally, IL-10-producing CD4+ T cells were found. In a next step, T cell reactivity to each single antigen was independently evaluated with T cell libraries and [3H]-thymidine incorporation assays. Here, Vimentin and Annexin A2 were identified as the main T cell targets. Finally, Vimentin reactive T cells were also found in the urine of three patients with active disease. Overall, our experiments show that antigen-specific CD4+ T cells targeting renally expressed antigens arise in human lupus nephritis and correlate with disease activity and are mainly of the Th1 subset

    A novel 2-metagene signature to identify high-risk HNSCC patients amongst those who are clinically at intermediate risk and are treated with PORT.

    No full text
    (1) Background: Patients with locally advanced head and neck squamous cell carcinoma (HNSCC) who are biologically at high risk for the development of loco-regional recurrences after postoperative radiotherapy (PORT) but at intermediate risk according to clinical risk factors may benefit from additional concurrent chemotherapy. In this matched-pair study, we aimed to identify a corresponding predictive gene signature. (2) Methods: Gene expression analysis was performed on a multicenter retrospective cohort of 221 patients that were treated with postoperative radiochemotherapy (PORT-C) and 283 patients who were treated with PORT alone. Propensity score analysis was used to identify matched patient pairs from both cohorts. From differential gene expression analysis and Cox regression, a predictive gene signature was identified. (3) Results: 108 matched patient pairs were selected. We identified a 2-metagene signature that stratified patients into risk groups in both cohorts. The comparison of the high-risk patients between the two types of treatment showed higher loco-regional control (LRC) after treatment with PORT-C (p < 0.001), which was confirmed by a significant interaction term in Cox regression (p = 0.027), i.e., the 2-metagene signature was indicative for the type of treatment. (4) Conclusion: We have identified a novel gene signature that may be helpful to identify patients with high-risk HNSCC amongst those at intermediate clinical risk treated with PORT, who may benefit from additional concurrent chemotherapy
    corecore