2 research outputs found

    Effect of Hole Transporting Material on Charge Transfer Processes in Zinc Phthalocyanine Sensitized ZnO Nanorods

    No full text
    The photoinduced electron transfer processes were studied for hybrid systems consisting of self-assembled monolayer of zinc phthalocyanine (ZnPc) assembled on ZnO nanorods and a film of organic hole transporting material (HTM) atop. Polythiophene (P3HT) or Spiro-OMeTAD were used as HTM. The study was carried out by ultrafast transient absorption spectroscopy technique with selective excitation of ZnPc at 680 nm or P3HT at 500 nm. Data analysis revealed that photoexcitation of ZnPc in the structure ZnO|ZnPc|P3HT results in a fast (1.8 ps) electron transfer from ZnPc to ZnO, which is followed by a hole transfer from the ZnPc cation to P3HT roughly in 30 ps. However, in the case of ZnO|ZnPc|Spiro-OMeTAD structure, the primary reaction upon excitation of ZnPc is a fast (0.5 ps) hole transfer from ZnPc to Spiro-OMeTAD, and the second step is electron injection from the ZnPc anion to ZnO in roughly 120 ps. Thus, we demonstrate two structurally very similar hybrid architectures that implement two different mechanisms for photoinduced charge separation found in dye-sensitized or in organic solar cells

    Photoinduced Electron Injection from Zinc Phthalocyanines into Zinc Oxide Nanorods: Aggregation Effects

    No full text
    Phthalocyanines (Pc) are well-known light-harvesting compounds. However, despite the tremendous efforts on phthalocyanine synthesis, the achieved energy conversion efficiencies for Pc-based dye-sensitized solar cells are moderate. To cast light on the factors reducing the conversion efficiency, we have undertaken a time-resolved spectroscopy study of the primary photoinduced reactions at a semiconductor-Pc interface. ZnO nanorods were chosen as a model semiconductor substrate with enhanced specific surface area. The use of a nanostructured oxide surface allows to extend the semiconductor-dye interface with a hole transporting layer (spiro-MeOTAD) in a controlled way, making the studied system closer to a solid-state dye-sensitized solar cell. Four zinc phthalocyanines are compared in this study. The compounds are equipped with bulky peripheral groups designed to reduce the self-aggregation of the Pcs. Almost no signs of aggregation can be observed from the absorption spectra of the Pcs assembled on a ZnO surface. Nevertheless, the time-resolved spectroscopy indicates that there are inter-Pc charge separation–recombination processes in the time frame of 1–100 ps. This may reduce the electron injection efficiency into the ZnO by more than 50%, pointing out to a remaining aggregation effect. Surprisingly, the electron injection time does not correlate with the length of the linker connecting the Pc to ZnO. A correlation between the electron injection time and the ”bulkiness” of the peripheral groups was observed. This correlation is further discussed with the use of computational modeling of the Pc arrangements on the ZnO surface
    corecore