8,513 research outputs found
Simulations of a Scintillator Compton Gamma Imager for Safety and Security
We are designing an all-scintillator Compton gamma imager for use in security
investigations and remediation actions involving radioactive threat material.
To satisfy requirements for a rugged and portable instrument, we have chosen
solid scintillator for the active volumes of both the scatter and absorber
detectors. Using the BEAMnrc/EGSnrc Monte Carlo simulation package, we have
constructed models using four different materials for the scatter detector:
LaBr_3, NaI, CaF_2 and PVT. We have compared the detector performances using
angular resolution, efficiency, and image resolution. We find that while PVT
provides worse performance than that of the detectors based entirely on
inorganic scintillators, all of the materials investigated for the scatter
detector have the potential to provide performance adequate for our purposes.Comment: Revised text and figures, Presented at SORMA West 2008, Published in
IEEE Transactions on Nuclear Scienc
Spin Susceptibility and Gap Structure of the Fractional-Statistics Gas
This paper establishes and tests procedures which can determine the electron
energy gap of the high-temperature superconductors using the model
with spinon and holon quasiparticles obeying fractional statistics. A simpler
problem with similar physics, the spin susceptibility spectrum of the spin 1/2
fractional-statistics gas, is studied. Interactions with the density
oscillations of the system substantially decrease the spin gap to a value of
, much less than the mean-field value of
. The lower few Landau levels remain visible, though broadened
and shifted, in the spin susceptibility. As a check of the methods, the
single-particle Green's function of the non-interacting Bose gas viewed in the
fermionic representation, as computed by the same approximation scheme, agrees
well with the exact results. The same mechanism would reduce the gap of the
model without eliminating it.Comment: 35 pages, written in REVTeX, 16 figures available upon request from
[email protected]
Compositional nanodomain formation in hybrid formate perovskites
We report the synthesis and structural characterisation of three mixed-metal
formate perovskite families [C(NH)]MCu(HCOO) (M = Mn,
Zn, Mg). Using a combination of infrared spectroscopy, non-negative matrix
factorization, and reverse Monte Carlo refinement, we show that the Mn- and
Zn-containing compounds support compositional nanodomains resembling the polar
nanoregions of conventional relaxor ferroelectrics. The M = Mg family exhibits
a miscibility gap that we suggest reflects the limiting behaviour of nanodomain
formation.Comment: 4 pages, 3 figure
Spin Transition in Strongly Correlated Bilayer Two Dimensional Electron Systems
Using a combination of heat pulse and nuclear magnetic resonance techniques
we demonstrate that the phase boundary separating the interlayer phase coherent
quantum Hall effect at in bilayer electron gases from the weakly
coupled compressible phase depends upon the spin polarization of the nuclei in
the host semiconductor crystal. Our results strongly suggest that, contrary to
the usual assumption, the transition is attended by a change in the electronic
spin polarization.Comment: 4 pages, 3 postscript figur
Onset of Interlayer Phase Coherence in a Bilayer Two-Dimensional Electron System: Effect of Layer Density Imbalance
Tunneling and Coulomb drag are sensitive probes of spontaneous interlayer
phase coherence in bilayer two-dimensional electron systems at total Landau
level filling factor . We find that the phase boundary between the
interlayer phase coherent state and the weakly-coupled compressible phase moves
to larger layer separations as the electron density distribution in the bilayer
is imbalanced. The critical layer separation increases quadratically with layer
density difference.Comment: 4 pages, 3 figure
- …