9 research outputs found

    Control of Nematodirus spp. infection by sheep flock owners in Northern Ireland

    Get PDF
    Publication history: Accepted - 10 October 2017; Published online - 19 October 2017.Background To address a lack of information on the control of ovine helminth parasites in Northern Ireland (NI), a number of research projects have been undertaken, dealing with gastrointestinal nematodes, tapeworms and liver fluke. This investigation concerns Nematodirus and concentrates on three aspects of disease: farm management strategies for its control, derived from the results of a Questionnaire; the efficacy of treatment used by farmers, as determined by a coprological survey; and the hatching requirements of Nematodirus eggs, that is, whether prolonged chilling is a pre-requisite for hatching. Results A Questionnaire was sent to 252 sheep farmers in NI in March 2012 (covering the years 2009–2012) and replies were received from 228 farmers. Under-dosing, inaccurate calibration of equipment and inappropriate product choice were poor practices identified. Following this survey, the efficacy of treatment of Nematodirus spp. in sheep flocks was evaluated in April and May 2012. Sampling kits were sent to 51 flock owners, all of whom returned pre- and post-anthelmintic dosing faecal samples to the laboratory for analysis. At the time of treatment, 41 flocks were positive for Nematodirus (as diagnosed by the presence of eggs). Reduced benzimidazole efficacy was detected in 35.7% of flocks tested (n = 28). Although only involving a small number of flocks, reduced efficacy of levamisole treatment was detected in 50%, of avermectins in 33% and of moxidectin in 75% of flocks tested (n = 2, 6 and 4, respectively). In the egg hatch experiment, carried out under “chilled” and “non-chilled” conditions, 43% of the eggs in the “non-chilled” group were able to hatch, compared to 100% in the “chilled” group. Conclusions The identification of inefficient control strategies argues for continued education of stockholders, in order to improve their management programmes. This is particularly important where the practices might impact on the development of anthelmintic resistance, which has been shown to exist on NI farms. The appropriate choice of anthelmintic is a vital part of this plan. The ability of eggs to hatch under non-chilled conditions demonstrates a flexibility in hatching behaviour. This may represent an adaptation to climate change and account for the recent emergence of a second, autumnal peak of infection

    Rabbit Haemorrhagic Disease Virus 2 (RHDV2; GI.2) in Ireland Focusing on Wild Irish Hares (Lepus timidus hibernicus): An Overview of the First Outbreaks and Contextual Review.

    Get PDF
    Publication history: Accepted - 22 February 2022; Published online - 24 February 2022Rabbit haemorrhagic disease virus 2 (RHDV2; GI.2) is a pathogenic lagovirus that emerged in 2010, and which now has a global distribution. Outbreaks have been associated with local population declines in several lagomorph species, due to rabbit haemorrhagic disease (RHD)-associated mortality raising concerns for its potential negative impact on threatened or vulnerable wild populations. The Irish hare (Lepus timidus hibernicus) is endemic to Ireland, and is of conservation interest. The first cases of RHDV2 in Ireland were reported in domestic rabbits (Oryctolagus cuniculus) in 2016, soon followed by the first known case in a wild rabbit also in 2016, from a population reported to be experiencing high fatalities. During summer 2019, outbreaks in wild rabbits were confirmed in several locations throughout Ireland. Six cases of RHDV2 in wild hares were confirmed between July and November 2019, at four locations. Overall, 27 cases in wildlife were confirmed in 2019 on the island of Ireland, with a predominantly southern distribution. Passive surveillance suggests that the Irish hare is susceptible to lethal RHDV2 infection, and that spillover infection to hares is geographically widespread in eastern areas of Ireland at least, but there is a paucity of data on epidemiology and population impacts. A literature review on RHD impact in closely related Lepus species suggests that intraspecific transmission, spillover transmission, and variable mortality occur in hares, but there is variability in reported resistance to severe disease and mortality amongst species. Several key questions on the impact of the pathogen in Irish hares remain. Surveillance activities throughout the island of Ireland will be important in understanding the spread of infection in this novel hostThis research received no external fundin

    A Novel Prototype Biosensor Array Electrode System for Detecting the Bacterial Pathogen Salmonella typhimurium.

    Get PDF
    Publication history: Accepted - 2 June 2022: Published online - 4 June 2022Salmonellosis caused by Salmonella sp. has long been reported all over the world. Despite the availability of various diagnostic methods, easy and effective detection systems are still required. This report describes a dialysis membrane electrode interface disc with immobilized specific antibodies to capture antigenic Salmonella cells. The interaction of a specific Salmonella antigen with a mouse anti-Salmonella monoclonal antibody complexed to rabbit anti-mouse secondary antibody conjugated with HRP and the substrate o-aminophenol resulted in a response signal output current measured using two electrode systems (cadmium reference electrode and glassy carbon working electrode) and an agilent HP34401A 6.5 digital multimeter without a potentiostat or applied potential input. A maximum response signal output current was recorded for various concentrations of Salmonella viz., 3, 30, 300, 3000, 30,000 and 300,000 cells. The biosensor has a detection limit of three cells, which is very sensitive when compared with other detection sensors. Little non-specific response was observed using Streptococcus, Vibrio, and Pseudomonas sp. The maximum response signal output current for a dialysis membrane electrode interface disc was greater than that for gelatin, collagen, and agarose. The device and technique have a range of biological applications. This novel detection system has great potential for future development and application in surveillance for microbial pathogens.This research work was financially supported by DRDE (DRDE-P1-2003/Task-11)

    Fasciola hepatica Gastrodermal Cells Selectively Release Extracellular Vesicles via a Novel Atypical Secretory Mechanism

    Get PDF
    Publication history: Accepted - 12 May, 2022; Published - 15 may 2022.The liver fluke, Fasciola hepatica, is an obligate blood-feeder, and the gastrodermal cells of the parasite form the interface with the host’s blood. Despite their importance in the host–parasite interaction, in-depth proteomic analysis of the gastrodermal cells is lacking. Here, we used laser microdissection of F. hepatica tissue sections to generate unique and biologically exclusive tissue fractions of the gastrodermal cells and tegument for analysis by mass spectrometry. A total of 226 gastrodermal cell proteins were identified, with proteases that degrade haemoglobin being the most abundant. Other detected proteins included those such as proton pumps and anticoagulants which maintain a microenvironment that facilitates digestion. By comparing the gastrodermal cell proteome and the 102 proteins identified in the laser microdissected tegument with previously published tegument proteomic datasets, we showed that one-quarter of proteins (removed by freeze– thaw extraction) or one-third of proteins (removed by detergent extraction) previously identified as tegumental were instead derived from the gastrodermal cells. Comparative analysis of the laser microdissected gastrodermal cells, tegument, and F. hepatica secretome revealed that the gastrodermal cells are the principal source of secreted proteins, as well as showed that both the gastrodermal cells and the tegument are likely to release subpopulations of extracellular vesicles (EVs). Microscopical examination of the gut caeca from flukes fixed immediately after their removal from the host bile ducts showed that selected gastrodermal cells underwent a progressive thinning of the apical plasma membrane which ruptured to release secretory vesicles en masse into the gut lumen. Our findings suggest that gut-derived EVs are released via a novel atypical secretory route and highlight the importance of the gastrodermal cells in nutrient acquisition and possible immunomodulation by the parasite.This work was supported by a grant to M.W.R. (BB/L019612/1) from the Biotechnology and Biological Sciences Research Council (BBSRC). A.P.S.B. was supported by a postgraduate studentship from the Department for the Economy (DfE) Northern Ireland

    Case Report of Puffinosis in a Manx Shearwater (Puffinus puffinus) Suggesting Environmental Aetiology

    Get PDF
    Publication history: Accepted - 1 December 2022; Published online - 7 December 2022Puffinosis is a disease of a range of seabirds characterised by dorsal and ventral blistering of their webbed feet, conjunctivitis, dry necrosis, leg spasticity, head shaking, loss of balance, tremors, and death. It is associated with Manx shearwaters (Puffinus puffinus), frequently affecting chicks within their underground nesting burrows. The aetiology of the disease is unclear but has been attributed to a type-2 coronavirus associated with Neotombicula mites as a potential vector. However, there is some uncertainty given potential laboratory contamination with mouse hepatitis virus and failure to fulfil Koch’s postulates, with birds injected with isolates remaining healthy. We describe a detailed case report of puffinosis in a Manx Shearwater covering necropsy, histology, bacteriology, and metagenomics including viral sequencing. We found no evidence of viral infection or parasites. Our results are consistent with an entirely environmental aetiology, with caustic faecal ammonia in damp nesting burrows causing conjunctivitis and foot dermatitis breaking the skin, allowing common soil bacteria (i.e., Flavobacterium, Staphylococcus and Serratia spp., Clostridia perfringens and Enterococcus faecalis) to cause opportunistic infection, debilitating the bird and leading to death. A similar condition (foot pad dermatitis or FPD) has been reported in broiler chickens, attributed to caustic faeces, high humidity, and poor environmental conditions during indoor rearing, preventable by adequate ventilation and husbandry. This is consistent with puffinosis being observed in Shearwater nesting burrows situated in tall, dense, vegetation (e.g., bracken Pteridium aquilinum) but rarely reported in burrows situated in well-ventilated, short coastal grasslands. This proposed environmental aetiology accounts for the disease’s non-epizootic prevalence, spatial variation within colonies, and higher frequency in chicks that are restricted to nesting burrows.Niamh Esmonde was supported by a UKRI QUADRAT Doctoral Training Programme (DTP) studentship, grant number NE/S007377/1 funded by the Natural Environment Research Council (NERC). The Agri-Food and Biosciences Institute (AFBI) funded the costs of necropsy, histology, bacteriology, parasitology, and metagenomics as part of the Queen’s–AFBI Alliance. Jignasha Patel, who conducted the metagenomics, was funded by the Research Leaders 2025 Programme cofounded by Teagasc and the European Union Horizon 2020 Research and Innovation Programme under a Marie Skłodowska-Curie grant (grant 754380). Paris Jaggers was supported by a UKRI NERC scholarship (grant NE/S007474/1)

    Transcriptome and secretome analysis of intra-mammalian life-stages of the emerging helminth pathogen, Calicophoron daubneyi reveals adaptation to a unique host environment.

    Get PDF
    Publication history: Accepted - 20 October 2020; Published online - 20 October 2020.Paramphistomosis, caused by the rumen fluke, Calicophoron daubneyi, is a parasitic infection of ruminant livestock which has seen a rapid rise in prevalence throughout Western Europe in recent years. Following ingestion of metacercariae (parasite cysts) by the mammalian host, newly-excysted juveniles (NEJs) emerge and invade the duodenal submucosa which causes significant pathology in heavy infections. The immature larvae then migrate upwards, along the gastrointestinal tract, and enter the rumen where they mature and begin to produce eggs. Despite their emergence, and sporadic outbreaks of acute disease, we know little about the molecular mechanisms used by C. daubneyi to establish infection, acquire nutrients and to avoid the host immune response. Here, transcriptome analysis of four intra-mammalian life-cycle stages, integrated with secretome analysis of the NEJ and adult parasites (responsible for acute and chronic disease respectively), revealed how the expression and secretion of selected families of virulence factors and immunomodulators are regulated in accordance with fluke development and migration. Our data show that whilst a family of cathepsins B with varying S2 sub-site residues (indicating distinct substrate specificities) are differentially secreted by NEJs and adult flukes, cathepsins L and F are secreted in low abundance by NEJs only. We found that C. daubneyi has an expanded family of aspartic peptidases, which is up-regulated in adult worms, although they are underrepresented in the secretome. The most abundant proteins in adult fluke secretions were helminth defence molecules (HDMs) that likely establish an immune environment permissive to fluke survival and/or neutralise pathogen-associated molecular patterns (PAMPs) such as bacterial lipopolysaccharide in the microbiome-rich rumen. The distinct collection of molecules secreted by C. daubneyi allowed the development of the first coproantigen-based ELISA for paramphistomosis which, importantly, did not recognise antigens from other helminths commonly found as co-infections with rumen fluke.This work was supported by an Industrial Partnership Award (to M.W.R) from the Biotechnology and Biological Sciences Research Council (BB/N017757/1) with additional financial support from Agrisearch and AHDB Beef & Lamb. N.A.M.O. was supported by a postgraduate studentship from the Department for the Economy (DfE) Northern Ireland

    Pre-mission InSights on the Interior of Mars

    No full text
    corecore