615 research outputs found

    Multifrequency Observations of Giant Radio Pulses from the Millisecond Pulsar B1937+21

    Full text link
    Giant pulses are short, intense outbursts of radio emission with a power-law intensity distribution that have been observed from the Crab Pulsar and PSR B1937+21. We have undertaken a systematic study of giant pulses from PSR B1937+21 using the Arecibo telescope at 430, 1420, and 2380 MHz. At 430 MHz, interstellar scattering broadens giant pulses to durations of ∌50ÎŒ\sim50 \musecs, but at higher frequencies the pulses are very short, typically lasting only ∌1\sim1-2ÎŒ2 \musecs. At each frequency, giant pulses are emitted only in narrow (\lsim10 \mus) windows of pulse phase located ∌55\sim 55-70ÎŒ70 \musec after the main and interpulse peaks. Although some pulse-to-pulse jitter in arrival times is observed, the mean arrival phase appears stable; a timing analysis of the giant pulses yields precision competitive with the best average profile timing studies. We have measured the intensity distribution of the giant pulses, confirming a roughly power-law distribution with approximate index of -1.8, contributing \gsim0.1% to the total flux at each frequency. We also find that the intensity of giant pulses falls off with a slightly steeper power of frequency than the ordinary radio emission.Comment: 21 pages, 10 Postscript figures; LaTeX with aaspp4.sty and epsf.tex; submitted to Ap

    Simultaneous Dual Frequency Observations of Giant Pulses from the Crab Pulsar

    Get PDF
    Simultaneous measurements of giant pulses from the Crab pulsar were taken at two widely spaced frequencies using the real-time detection of a giant pulse at 1.4 GHz at the Very Large Array to trigger the observation of that same pulse at 0.6 GHz at a 25-m telescope in Green Bank, WV. Interstellar dispersion of the signals provided the necessary time to communicate the trigger across the country via the Internet. About 70% of the pulses are seen at both 1.4 GHz and 0.6 GHz, implying an emission mechanism bandwidth of at least 0.8 GHz at 1 GHz for pulse structure on time scales of one to ten microseconds. The arrival times at both frequencies display a jitter of 100 microseconds within the window defined by the average main pulse profile and are tightly correlated. This tight correlation places limits on both the emission mechanism and on frequency dependent propagation within the magnetosphere. At 1.4 GHz the giant pulses are resolved into several, closely spaced components. Simultaneous observations at 1.4 GHz and 4.9 GHz show that the component splitting is frequency independent. We conclude that the multiplicity of components is intrinsic to the emission from the pulsar, and reject the hypothesis that this is the result of multiple imaging as the signal propagates through the perturbed thermal plasma in the surrounding nebula. At both 1.4 GHz and 0.6 GHz the pulses are characterized by a fast rise time and an exponential decay time which are correlated. The pulse broadening with its exponential decay form is most likely the result of multipath propagation in intervening ionized gas.Comment: LaTeX, 18 pages, 7 figures, accepted for publication in The Astrophysical Journa

    What makes the Crab pulsar shine?

    Full text link
    Our high time resolution observations of individual pulses from the Crab pulsar show that the main pulse and interpulse differ in temporal behavior, spectral behavior, polarization and dispersion. The main pulse properties are consistent with one current model of pulsar radio emission, namely, soliton collapse in strong plasma turbulence. The high-frequency interpulse is quite another story. Its dynamic spectrum cannot easily be explained by any current emission model; its excess dispersion must come from propagation through the star's magnetosphere. We suspect the high-frequency interpulse does not follow the ``standard model'', but rather comes from some unexpected region within the star's magnetosphere. Similar observations of other pulsars will reveal whether the radio emission mechanisms operating in the Crab pulsar are unique to that star, or can be identified in the general population.Comment: 5 pages, 2 figures, to appear in proceedings of meeting "Forty Years of Pulsars: Millisecond Pulsars, Magnetars and More", Montreal, August 200

    Giant Radio Pulses from the Crab Pulsar

    Full text link
    Individual giant radio pulses (GRPs) from the Crab pulsar last only a few microseconds. However, during that time they rank among the brightest objects in the radio sky reaching peak flux densities of up to 1500 Jy even at high radio frequencies. Our observations show that GRPs can be found in all phases of ordinary radio emission including the two high frequency components (HFCs) visible only between 5 and 9 GHz (Moffett & Hankins, 1996). This leads us to believe that there is no difference in the emission mechanism of the main pulse (MP), inter pulse (IP) and HFCs. High resolution dynamic spectra from our recent observations of giant pulses with the Effelsberg telescope at a center frequency of 8.35 GHz show distinct spectral maxima within our observational bandwidth of 500 MHz for individual pulses. Their narrow band components appear to be brighter at higher frequencies (8.6 GHz) than at lower ones (8.1 GHz). Moreover, there is an evidence for spectral evolution within and between those structures. High frequency features occur earlier than low frequency ones. Strong plasma turbulence might be a feasible mechanism for the creation of the high energy densities of ~6.7 x 10^4 erg cm^-3 and brightness temperatures of 10^31 K.Comment: accepted by Advances in Space Research, to appear in the 35th COSPAR assembly proceeding

    The role of betaines in alkaline extracts of Ascophyllum nodosum in the reduction of Meloidogyne javanica and M. incognita infestations of tomato plants

    Get PDF
    L'application sur les racines de plants de tomates d'un extrait alcalin de l'algue brune #Ascophyllum nodosum, disponible dans le commerce, produit une rĂ©duction significative du nombre de juvĂ©niles de deuxiĂšme stade de #Meloidogyne javanica et #M. incognita$ pĂ©nĂ©trant dans les racines, en comparaison avec des plants de tomates traitĂ©s uniquement avec de l'eau. Le nombre d'oeufs rĂ©cupĂ©rĂ©s sur les plants traitĂ©s par l'extrait d'algue est Ă©galement significativement plus faible. Lorsque les trois bĂ©taĂŻnes essentielles (bĂ©taĂŻne d'acide-gamma-aminobutyrique, bĂ©taĂŻne d'acide delta-aminovalĂ©rique, glycine bĂ©taĂŻne) prĂ©sentes dans l'extrait d'algue sont appliquĂ©es - Ă  des concentrations Ă©quivalent Ă  celles de l'extrait - on observe Ă©galement une rĂ©duction significative de l'infestation par les nĂ©matodes et du nombre d'oeufs rĂ©cupĂ©rĂ©s. Il peut donc ĂȘtre conclu que les bĂ©taĂŻnes prĂ©sentes dans l'extrait d'algue jouent un rĂŽle important dans le processus occasionnant les effets observĂ©s. Lorsque le sol est humidifĂ©e par une application des constituants inorganiques de l'extrait, on observe Ă©galement une rĂ©duction significative du nombre d'oeufs rĂ©cupĂ©rĂ©s, cette rĂ©duction Ă©tant plus faible que celle produite par application de bĂ©taĂŻnes. (RĂ©sumĂ© d'auteur

    High time-resolution observations of the Vela pulsar

    Full text link
    We present high time resolution observations of single pulses from the Vela pulsar (PSR B0833-45) made with a baseband recording system at observing frequencies of 660 and 1413 MHz. We have discovered two startling features in the 1413 MHz single pulse data. The first is the presence of giant micro-pulses which are confined to the leading edge of the pulse profile. One of these pulses has a peak flux density in excess of 2500 Jy, more than 40 times the integrated pulse peak. The second new result is the presence of a large amplitude gaussian component on the trailing edge of the pulse profile. This component can exceed the main pulse in intensity but is switched on only relatively rarely. Fluctutation spectra reveal a possible periodicity in this feature of 140 pulse periods. Unlike the rest of the profile, this component has low net polarization and emits predominantly in the orthogonal mode. This feature appears to be unique to the Vela pulsar. We have also detected microstructure in the Vela pulsar for the first time. These same features are present in the 660 MHz data. We suggest that the full width of the Vela pulse profile might be as large as 10 ms but that the conal edges emit only rarely.Comment: 6 pages, 5 figures, In Press with ApJ Letter

    A Survey for Transient Astronomical Radio Emission at 611 MHz

    Full text link
    We have constructed and operated the Survey for Transient Astronomical Radio Emission (STARE) to detect transient astronomical radio emission at 611 MHz originating from the sky over the northeastern United States. The system is sensitive to transient events on timescales of 0.125 s to a few minutes, with a typical zenith flux density detection threshold of approximately 27 kJy. During 18 months of around-the-clock observing with three geographically separated instruments, we detected a total of 4,318,486 radio bursts. 99.9% of these events were rejected as locally generated interference, determined by requiring the simultaneous observation of an event at all three sites for it to be identified as having an astronomical origin. The remaining 3,898 events have been found to be associated with 99 solar radio bursts. These results demonstrate the remarkably effective RFI rejection achieved by a coincidence technique using precision timing (such as GPS clocks) at geographically separated sites. The non-detection of extra-solar bursting or flaring radio sources has improved the flux density sensitivity and timescale sensitivity limits set by several similar experiments in the 1970s. We discuss the consequences of these limits for the immediate solar neighborhood and the discovery of previously unknown classes of sources. We also discuss other possible uses for the large collection of 611 MHz monitoring data assembled by STARE.Comment: 24 pages, 6 figures; to appear in PAS
    • 

    corecore