6 research outputs found

    The multimodal Munich Clinical Deep Phenotyping study to bridge the translational gap in severe mental illness treatment research

    Get PDF
    Introduction: Treatment of severe mental illness (SMI) symptoms, especially negative symptoms and cognitive dysfunction in schizophrenia, remains a major unmet need. There is good evidence that SMIs have a strong genetic background and are characterized by multiple biological alterations, including disturbed brain circuits and connectivity, dysregulated neuronal excitation-inhibition, disturbed dopaminergic and glutamatergic pathways, and partially dysregulated inflammatory processes. The ways in which the dysregulated signaling pathways are interconnected remains largely unknown, in part because well-characterized clinical studies on comprehensive biomaterial are lacking. Furthermore, the development of drugs to treat SMIs such as schizophrenia is limited by the use of operationalized symptom-based clusters for diagnosis. Methods: In line with the Research Domain Criteria initiative, the Clinical Deep Phenotyping (CDP) study is using a multimodal approach to reveal the neurobiological underpinnings of clinically relevant schizophrenia subgroups by performing broad transdiagnostic clinical characterization with standardized neurocognitive assessments, multimodal neuroimaging, electrophysiological assessments, retinal investigations, and omics-based analyzes of blood and cerebrospinal fluid. Moreover, to bridge the translational gap in biological psychiatry the study includes in vitro investigations on human-induced pluripotent stem cells, which are available from a subset of participants. Results: Here, we report on the feasibility of this multimodal approach, which has been successfully initiated in the first participants in the CDP cohort; to date, the cohort comprises over 194 individuals with SMI and 187 age and gender matched healthy controls. In addition, we describe the applied research modalities and study objectives. Discussion: The identification of cross-diagnostic and diagnosis-specific biotype-informed subgroups of patients and the translational dissection of those subgroups may help to pave the way toward precision medicine with artificial intelligence-supported tailored interventions and treatment. This aim is particularly important in psychiatry, a field where innovation is urgently needed because specific symptom domains, such as negative symptoms and cognitive dysfunction, and treatment-resistant symptoms in general are still difficult to treat

    Improved in vivo osseointegration and degradation behavior of PEO surface-modified WE43 magnesium plates and screws after 6 and 12 months

    No full text
    Magnesium is a highly promising candidate with respect to its future use as a material for resorbable implants. When magnesium degrades, hydrogen gas is released. High doses of gas emergence are reported to impair osseointegration and may therefore lead to fixation failure. The successful delay and reduction of the degradation rate by applying plasma electrolytic oxidation (PEO) as a post processing surface modification method for magnesium alloy has recently been demonstrated. The aim of this study was thus to compare the degradation behavior of a WE43-based plate system with and without respective PEO surface modification and to further investigate osseointegration, as well as the resulting effects on the surrounding bony tissue of both variants in a miniature pig model. WE43 magnesium screws and plates without (WE43) and with PEO surface modification (WE43-PEO) were implanted in long bones of Go spacing diaeresis ttingen Miniature Pigs. At six and twelve months after surgery, micro-CT and histomorphometric analysis was performed. Residual screw volume (SV/TV; WE43: 28.8 +/- 21.1%; WE43-PEO: 62.9 +/- 31.0%; p = 0.027) and bone implant contact area (BIC; WE43: 18.1 +/- 21.7%; WE43-PEO: 51.6 +/- 27.7%; p = 0.015) were increased after six months among the PEO-modified implants. Also, surrounding bone density within the cortical bone was not affected by surface modification (BVTV; WE43: 76.7 +/- 13.1%; WE43-PEO: 73.1 +/- 16.2%; p = 0.732). Intramedullar (BV/TV; WE43: 33.2 +/- 16.7%; WE43-PEO 18.4 +/- 9.0%; p = 0.047) and subperiosteal (bone area; WE43: 2.6 +/- 3.4 mm2; WE43-PEO: 6,9 +/- 5.2 mm2; p = 0.049) new bone formation was found for both, surface-modified and nonsurface-modified groups. After twelve months, no significant differences of SV/TV and BV/TV were found between the two groups. PEO surface modification of WE43 plate systems improved osseointegration and significantly reduced the degradation rate within the first six months in vivo. Osteoconductive and osteogenic stimulation by WE43 magnesium implants led to overall increased bone growth, when prior PEO surface modification was conducted

    Optical coherence tomography reveals retinal thinning in schizophrenia spectrum disorders

    Get PDF
    Background Schizophrenia spectrum disorders (SSDs) are presumed to be associated with retinal thinning. However, evidence is lacking as to whether these retinal alterations reflect a disease-specific process or are rather a consequence of comorbid diseases or concomitant microvascular impairment. Methods The study included 126 eyes of 65 patients with SSDs and 143 eyes of 72 healthy controls. We examined macula and optic disc measures by optical coherence tomography (OCT) and OCT angiography (OCT-A). Additive mixed models were used to assess the impact of SSDs on retinal thickness and perfusion and to explore the association of retinal and clinical disease-related parameters by controlling for several ocular and systemic covariates (age, sex, spherical equivalent, intraocular pressure, body mass index, diabetes, hypertension, smoking status, and OCT signal strength). Results OCT revealed significantly lower parafoveal macular, macular ganglion cell-inner plexiform layer (GCIPL), and macular retinal nerve fiber layer (RNFL) thickness and thinner mean and superior peripapillary RNFL in SSDs. In contrast, the applied OCT-A investigations, which included macular and peripapillary perfusion density, macular vessel density, and size of the foveal avascular zone, did not reveal any significant between-group differences. Finally, a longer duration of illness and higher chlorpromazine equivalent doses were associated with lower parafoveal macular and macular RNFL thickness. Conclusions This study strengthens the evidence for disease-related retinal thinning in SSDs

    Fatigue as a symptom or comorbidity of neurological diseases

    No full text
    Fatigue, best described as an overwhelming feeling of tiredness and exhaustion, occurs in the context of various neurological diseases. The high prevalence of fatigue as either a symptom or a comorbidity of neurological disease must be taken seriously, as fatigue interferes with patients' activities of daily living, has a remarkable negative impact on quality of life, and is a major reason for early retirement. The tremendous consequences of fatigue are consistent across neurological diseases, as is the uncertainty concerning its underlying pathophysiological mechanisms. Inconsistencies in defining fatigue contribute to the present situation, in which fatigue represents one of the least-studied and least- understood conditions. Tools for assessing fatigue abound, but few can be recommended for clinical or research use. To make matters worse, evidence-based pharmacological treatment options are scarce. However, non-pharmacological approaches are currently promising and likely to become of increasing importance. In sum, fatigue is challenging for both health-care professionals and patients. The present article aims to provide a comprehensive review of the literature on fatigue in neurological disease, and to reveal its complexity, as well as weaknesses in the concept of fatigue itself

    Fatigue as a symptom or comorbidity of neurological diseases

    No full text
    corecore