46 research outputs found

    Adaptive Model Predictive Control for Engine-Driven Ducted Fan Lift Systems using an Associated Linear Parameter Varying Model

    Full text link
    Ducted fan lift systems (DFLSs) powered by two-stroke aviation piston engines present a challenging control problem due to their complex multivariable dynamics. Current controllers for these systems typically rely on proportional-integral algorithms combined with data tables, which rely on accurate models and are not adaptive to handle time-varying dynamics or system uncertainties. This paper proposes a novel adaptive model predictive control (AMPC) strategy with an associated linear parameter varying (LPV) model for controlling the engine-driven DFLS. This LPV model is derived from a global network model, which is trained off-line with data obtained from a general mean value engine model for two-stroke aviation engines. Different network models, including multi-layer perceptron, Elman, and radial basis function (RBF), are evaluated and compared in this study. The results demonstrate that the RBF model exhibits higher prediction accuracy and robustness in the DFLS application. Based on the trained RBF model, the proposed AMPC approach constructs an associated network that directly outputs the LPV model parameters as an adaptive, robust, and efficient prediction model. The efficiency of the proposed approach is demonstrated through numerical simulations of a vertical take-off thrust preparation process for the DFLS. The simulation results indicate that the proposed AMPC method can effectively control the DFLS thrust with a relative error below 3.5%

    Single crystal growth and superconductivity in RbNi2_2Se2_2

    Get PDF
    We report the synthesis and characterization of RbNi2_2Se2_2, an analog of the iron chalcogenide superconductor Rbx_xFe2_2Se2_2, via transport, angle resolved photoemission spectroscopy, and density functional theory calculations. A superconducting transition at TcT_{c} = 1.20 K is identified. In normal state, RbNi2_2Se2_2 shows paramagnetic and Fermi liquid behaviors. A large Sommerfeld coefficient yields a heavy effective electron mass of m6mem^{*}\approx6m_{e}. In the superconducting state, zero-field electronic specific-heat data CesC_{es} can be described by a two-gap BCS model, indicating that RbNi2_2Se2_2 is a multi-gap superconductor. Our density functional theory calculations and angle resolved photoemission spectroscopy measurements demonstrate that RbNi2_2Se2_2 exhibits relatively weak correlations and multi-band characteristics, consistent with the multi-gap superconductivity.Comment: 7 pages, 4 figure

    RING finger 138 deregulation distorts NF-кB signaling and facilities colitis switch to aggressive malignancy

    Get PDF
    Prolonged activation of nuclear factor (NF)-кB signaling significantly contributes to the development of colorectal cancer (CRC). New therapeutic opportunities are emerging from targeting this distorted cell signaling transduction. Here, we discovered the critical role of RING finger 138 (RNF138) in CRC tumorigenesis through regulating the NF-кB signaling, which is independent of its Ubiquitin-E3 ligase activity involved in DNA damage response. RNF138(−/−) mice were hyper-susceptible to the switch from colitis to aggressive malignancy, which coincided with sustained aberrant NF-кB signaling in the colonic cells. Furthermore, RNF138 suppresses the activation of NF-кB signaling pathway through preventing the translocation of NIK and IKK-Beta Binding Protein (NIBP) to the cytoplasm, which requires the ubiquitin interaction motif (UIM) domain. More importantly, we uncovered a significant correlation between poor prognosis and the downregulation of RNF138 associated with reinforced NF-кB signaling in clinical settings, raising the possibility of RNF138 dysregulation as an indicator for the therapeutic intervention targeting NF-кB signaling. Using the xenograft models built upon either RNF138-dificient CRC cells or the cells derived from the RNF138-dysregulated CRC patients, we demonstrated that the inhibition of NF-кB signaling effectively hampered tumor growth. Overall, our work defined the pathogenic role of aberrant NF-кB signaling due to RNF138 downregulation in the cascade events from the colitis switch to colonic neoplastic transformation and progression, and also highlights the possibility of targeting the NF-кB signaling in treating specific subtypes of CRC indicated by RNF138-ablation

    Wafer-Scale Synthesis of WS2 Films with In Situ Controllable p-Type Doping by Atomic Layer Deposition

    Get PDF
    Wafer-scale synthesis of p-type TMD films is critical for its commercialization in next-generation electro/optoelectronics. In this work, wafer-scale intrinsic n-type WS2 films and in situ Nb-doped p-type WS2 films were synthesized through atomic layer deposition (ALD) on 8-inch α-Al2O3/Si wafers, 2-inch sapphire, and 1 cm2 GaN substrate pieces. The Nb doping concentration was precisely controlled by altering cycle number of Nb precursor and activated by postannealing. WS2 n-FETs and Nb-doped p-FETs with different Nb concentrations have been fabricated using CMOS-compatible processes. X-ray photoelectron spectroscopy, Raman spectroscopy, and Hall measurements confirmed the effective substitutional doping with Nb. The on/off ratio and electron mobility of WS2 n-FET are as high as 105 and 6.85 cm2 V-1 s-1, respectively. In WS2 p-FET with 15-cycle Nb doping, the on/off ratio and hole mobility are 10 and 0.016 cm2 V-1 s-1, respectively. The p-n structure based on n- and p- type WS2 films was proved with a 104 rectifying ratio. The realization of controllable in situ Nb-doped WS2 films paved a way for fabricating wafer-scale complementary WS2 FETs.This work is partially supported by the NSFC (62004044 and 61904033) and by State Key Laboratory of ASIC & System (2021MS004). This research was partially supported by the National Science Foundation through the Center for Dynamics and Control of Materials: an NSF MRSEC under Cooperative Agreement No. DMR-1720595. Li Ji acknowl- edges the support of starting research fund from Fudan Uni- versity and the Young Scientist Project of MOE Innovation platform. Deji Akinwande acknowledges the support of ARO via a PECASE award.Center for Dynamics and Control of Material

    Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3

    Get PDF
    We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg², a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10⁻²⁵ yr⁻¹. The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (−16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than −16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day⁻¹ (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than −16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than 10⁻⁴, or φ > 30° to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of −16 mag would constrain the maximum fraction of bright kilonovae to <25%

    Path Planning for Autonomous Landing of Helicopter on the Aircraft Carrier

    No full text
    Helicopters are introduced on the aircraft carrier to perform the tasks which are beyond the capability of fixed-wing aircraft. Unlike fixed-wing aircraft, the landing path of helicopters is not regulated and can be determined autonomously, and the path planning problem for autonomous landing of helicopters on the carrier is studied in this paper. To solve the problem, the returning flight is divided into two phases, that is, approaching the carrier and landing on the flight deck. The feature of each phase is depicted, and the conceptual model is built on this basis to provide a general frame and idea of solving the problem. In the established mathematical model, the path planning problem is formulated into an optimization problem, and the constraints are classified by the characteristics of the helicopter and the task requirements. The goal is to reduce the terminal position error and the impact between the helicopter and the flight deck. To obtain a reasonable landing path, a multiphase path planning algorithm with the pigeon inspired optimization (MPPIO) algorithm is proposed to adapt to the changing environment. Three experiments under different situations, that is, static carrier, only horizontal motion of carrier considered, and 3D motion of carrier considered, are conducted. The results demonstrate that the helicopters can all reach the ideal landing point with the reasonable path in different situations. The small terminal error and relatively vertical motion between the helicopter and the carrier ensure a precise and safe landing
    corecore