6,725 research outputs found
The monotonicity results and sharp inequalities for some power-type means of two arguments
For with , we define
M_{p}=M^{1/p}(a^{p},b^{p})\text{if}p\neq 0 \text{and} M_{0}=\sqrt{ab}, where
and stand for the arithmetic mean, Heronian mean,
logarithmic mean, identric (exponential) mean, the first Seiffert mean, the
second Seiffert mean, Neuman-S\'{a}ndor mean, power-exponential mean and
exponential-geometric mean, respectively. Generally, if is a mean of
and , then is also, and call "power-type mean". We prove the
power-type means , , , are increasing in on
and establish sharp inequalities among power-type means ,
, , , , , , % . From this a
very nice chain of inequalities for these means
L_{2}<P<N_{1/2}<He<A_{2/3}<I<Z_{1/3}<Y_{1/2} follows. Lastly, a conjecture is
proposed.Comment: 11 page
Fast kinetic Monte Carlo simulation of strained heteroepitaxy in three dimensions
Accelerated algorithms for simulating the morphological evolution of strained
heteroeptiaxy based on a ball and spring lattice model in three dimensions are
explained. We derive exact Green's function formalisms for boundary values in
the associated lattice elasticity problems. The computational efficiency is
further enhanced by using a superparticle surface coarsening approximation.
Atomic hoppings simulating surface diffusion are sampled using a multi-step
acceptance-rejection algorithm. It utilizes quick estimates of the atomic
elastic energies from extensively tabulated values modulated by the local
strain. A parameter controls the compromise between accuracy and efficiency of
the acceptance-rejection algorithm.Comment: 10 pages, 4 figures, submitted to Proceedings of Barrett Lectures
2007, Journal of Scientific Computin
Capillary-based multiplexed isothermal nucleic acid-based test for sexually transmitted diseases in patients
We demonstrate a multiplexed loop mediated isothermal amplification (LAMP) assay for infectious disease diagnostics, where the analytical process flow of target pathogens genomic DNA is performed manually by moving magnetic beads through a series of plugs in a capillary. Heat is provided by a water bath and the results read by the naked eye, enabling applications in low resource settings
Competing roughening mechanisms in strained heteroepitaxy: a fast kinetic Monte Carlo study
We study the morphological evolution of strained heteroepitaxial films using
kinetic Monte Carlo simulations in two dimensions. A novel Green's function
approach, analogous to boundary integral methods, is used to calculate elastic
energies efficiently. We observe island formation at low lattice misfit and
high temperature that is consistent with the Asaro-Tiller-Grinfeld instability
theory. At high misfit and low temperature, islands or pits form according to
the nucleation theory of Tersoff and LeGoues.Comment: 4 pages, 4 figures, ReVTe
Universal condition for critical percolation thresholds of kagome-like lattices
Lattices that can be represented in a kagome-like form are shown to satisfy a
universal percolation criticality condition, expressed as a relation between
P_3, the probability that all three vertices in the triangle connect, and P_0,
the probability that none connect. A linear approximation for P_3(P_0) is
derived and appears to provide a rigorous upper bound for critical thresholds.
A numerically determined relation for P_3(P_0) gives thresholds for the kagome,
site-bond honeycomb, (3-12^2), and "stack-of-triangle" lattices that compare
favorably with numerical results.Comment: Several new figures and small change
Systematic Analysis of Impact of Sampling Regions and Storage Methods on Fecal Gut Microbiome and Metabolome Profiles.
The contribution of human gastrointestinal (GI) microbiota and metabolites to host health has recently become much clearer. However, many confounding factors can influence the accuracy of gut microbiome and metabolome studies, resulting in inconsistencies in published results. In this study, we systematically investigated the effects of fecal sampling regions and storage and retrieval conditions on gut microbiome and metabolite profiles from three healthy children. Our analysis indicated that compared to homogenized and snap-frozen samples (standard control [SC]), different sampling regions did not affect microbial community alpha diversity, while a total of 22 of 176 identified metabolites varied significantly across different sampling regions. In contrast, storage conditions significantly influenced the microbiome and metabolome. Short-term room temperature storage had a minimal effect on the microbiome and metabolome profiles. Sample storage in RNALater showed a significant level of variation in both microbiome and metabolome profiles, independent of the storage or retrieval conditions. The effect of RNALater on the metabolome was stronger than the effect on the microbiome, and individual variability between study participants outweighed the effect of RNALater on the microbiome. We conclude that homogenizing stool samples was critical for metabolomic analysis but not necessary for microbiome analysis. Short-term room temperature storage had a minimal effect on the microbiome and metabolome profiles and is recommended for short-term fecal sample storage. In addition, our study indicates that the use of RNALater as a storage medium of stool samples for microbial and metabolomic analyses is not recommended.IMPORTANCE The gastrointestinal microbiome and metabolome can provide a new angle to understand the development of health and disease. Stool samples are most frequently used for large-scale cohort studies. Standardized procedures for stool sample handling and storage can be a determining factor for performing microbiome or metabolome studies. In this study, we focused on the effects of stool sampling regions and stool sample storage conditions on variations in the gut microbiome composition and metabolome profile
Electron and Ion Acceleration in Relativistic Shocks with Applications to GRB Afterglows
We have modeled the simultaneous first-order Fermi shock acceleration of
protons, electrons, and helium nuclei by relativistic shocks. By parameterizing
the particle diffusion, our steady-state Monte Carlo simulation allows us to
follow particles from particle injection at nonthermal thermal energies to
above PeV energies, including the nonlinear smoothing of the shock structure
due to cosmic-ray (CR) backpressure. We observe the mass-to-charge (A/Z)
enhancement effect believed to occur in efficient Fermi acceleration in
non-relativistic shocks and we parameterize the transfer of ion energy to
electrons seen in particle-in-cell (PIC) simulations. For a given set of
environmental and model parameters, the Monte Carlo simulation determines the
absolute normalization of the particle distributions and the resulting
synchrotron, inverse-Compton, and pion-decay emission in a largely
self-consistent manner. The simulation is flexible and can be readily used with
a wide range of parameters typical of gamma-ray burst (GRB) afterglows. We
describe some preliminary results for photon emission from shocks of different
Lorentz factors and outline how the Monte Carlo simulation can be generalized
and coupled to hydrodynamic simulations of GRB blast waves. We assume Bohm
diffusion for simplicity but emphasize that the nonlinear effects we describe
stem mainly from an extended shock precursor where higher energy particles
diffuse further upstream. Quantitative differences will occur with different
diffusion models, particularly for the maximum CR energy and photon emission,
but these nonlinear effects should be qualitatively similar as long as the
scattering mean free path is an increasing function of momentum.Comment: Accepted for publication in MNRA
- …