27 research outputs found

    Dynamic feedbacks among tree functional traits, termite populations and deadwood turnover

    Get PDF
    Changes in the composition of plant functional traits may affect ecosystem processes through influencing trophic interactions. Bottom-up control by plant species through food availability to animals may vary with time. However, such dynamics and their consequences for deadwood turnover are poorly known for detrital food webs. We introduce a dynamic conceptual model of the feedback of tree functional traits, (deadwood-feeding) termite populations and deadwood decomposition. We hypothesized that tree functional diversity (in terms of a wood resource economic spectrum [WES]) supports the sustenance of termite populations via complementary food supplied through time, as deadwood varies in traits both initially across species and because of different decomposition rates. Simultaneously, driven by this temporal dynamics of food quality, the consumption of deadwood by termites should hypothetically sustain deadwood turnover in a functionally diverse forest over time. We tested our hypothesis through an 18-month termite-exclusion decomposition experiment by incubating coarse (i.e. 5 cm diameter) deadwood of 34 woody species in two subtropical forests in East China. One site still sustained a healthy population of pangolins as the keystone termite predator, whereas another had lost its pangolins due to hunting and illegal wildlife trade. The results supported our hypothesis: in the first 12 months, termites amplified the positive linear relationship between % wood mass loss and initial wood quality (WES). In contrast, between 12 and 18 months, termite-mediated consumption, and associated wood mass loss, showed a humpback relation with the initial WES. This shift in termite preference of deadwood species along the WES reflects complementary food availability to termites through time. Synthesis. Our findings imply that tree functional composition, with variation in deadwood quality through decomposition time, can help to sustain termite populations and thereby forest carbon turnover. Future studies need to test whether and how our conceptual model may apply to other detrital systems and food webs. In general, food web research would benefit from a stronger focus on temporal patterns for better understanding the interactions of basal resource functional traits and consumers on ecosystem functions

    Influences of the bark economics spectrum and positive termite feedback on bark and xylem decomposition

    Get PDF
    The plant economics spectrum integrates trade-offs and covariation in resource economic traits of different plant organs and their consequences for pivotal ecosystem processes, such as decomposition. However, in this concept stems are often considered as one unit ignoring the important functional differences between wood (xylem) and bark. These differences may not only affect the performance of woody plants during their lifetime, but may also have important “afterlife effects.” Specifically, bark quality may strongly affect deadwood decomposition of different woody species. We hypothesized that (1) bark quality strongly influences bark decomposability to microbial decomposers, and possibly amplifies the interspecific variation in decomposition by invertebrate consumption, especially termites; and (2) bark decomposition has secondary effects on xylem mass loss by providing access to decomposers including invertebrates such as termites. We tested these hypotheses across 34 subtropical woody species representing five common plant functional types, by conducting an in situ deadwood decomposition experiment over 12-month in two sites in subtropical evergreen broad-leaved forest in China. We employed visual examination and surface density measurement to quantify termite consumption to both bark and the underlying xylem, respectively. Using principal component analysis, we synthesized seven bark traits to provide the first empirical evidence for a bark economics spectrum (BES), with high BES values (i.e., bark thickness, nitrogen, phosphorus, and cellulose contents) indicating a resource acquisitive strategy and low BES values (i.e., carbon, lignin, and dry matter contents) indicating a resource conservative strategy. The BES affected interspecific variation in bark mass loss and this relationship was strongly amplified by termites. The BES also explained nearly half of the interspecific variation in termite consumption to xylem, making it an important contributor to deadwood decomposition overall. Moreover, the above across-species relationships manifested also within plant functional types, highlighting the value of using continuous variation in bark traits rather than categorical plant functional types in carbon cycle modeling. Our findings demonstrate the potent role of the BES in influencing deadwood decomposition including positive invertebrate feedback thereon in warm-climate forests, with implications for the role of bark quality in carbon cycling in other woody biomes

    Biocompati bility and osteoconductivity of the pyrost bone substitutes

    No full text
    The purpose of this study was to re-evaluate the bone regeneration power and the in vitro biocompatibility of the Pyrost bone substitute. Twentyfour adult New Zealand White rabbits were used. Bony defect over both iliac crest and mid-diaphyseal portion of the ulna bone were created. Appropriate sized-block of Pyrost bone substitute were implanted. Four of the animals were killed at each postoperative month to evaluate its bone regeneration power by histologic study. The Pyrost bones were co-cultured with osteoblasts to evaluate its biocompatibility. The results showed that Pyrost bone substitute was quite stable and incorporated well with active bone regeneration. The Pyrost heal better at the iliac crest than at the ulnar defect. The Pyrost was compatible to the osteoblasts. Osteoblasts had successfully seeded and mitotically expanded on the porous surface of the Pyrost bone graft. The result showed that Pyrost bone obviously exerts an intense stimulus on osteo-regeneration in the presence of osteoblasts. We consider Pyrost to be an altemate to the conventional preserved allografts that is occasionally necessary

    How detritivores, plant traits and time modulate coupling of leaf versus woody litter decomposition rates across species

    No full text
    Plant functional traits are increasingly used to understand ecological relationships and (changing) ecosystem functions. For understanding ecosystem-level biogeochemistry, we need to understand how (much) traits co-vary between different plant organs across species and its implications for litter decomposition. However, we do not know how the degree of synchronous variation in decomposition rates between organs across species could be influenced by different keystone invertebrates decomposing different senesced plant organs, especially in warm-climate forests. Here we asked whether interspecific patterns in wood and leaf decomposition rates and in the spectra of resource economics traits underpinning them, co-vary across woody species; and how (much) the keystone invertebrate decomposers of the litter of these organs enhance or lower such co-variation of decomposition rates through time. We addressed these questions through an 18-month ‘common-garden’ decomposition experiment using leaf, twig and branch litter of 41 woody species in two distant subtropical forest sites in east China. We quantified the effects of leaf, twig and branch functional traits and their respective key invertebrates (moth larvae, termites) on the decomposition rates of those organs. Interspecific variation in wood traits was partly decoupled from that in leaf traits across species, while strong coupling was found between twigs and branches. The co-variation between leaf and woody organ decomposition rates was altered dynamically through the shifting activities of the key decomposers, which created nonlinear relationships of invertebrate litter consumption as a function of species rankings along the resource economic trait spectra of leaves and branches. The deviations from coupling of decomposition rates between organs were likely caused by combinations of three mechanisms: (1) (de-)coupling between organs of other traits, not commonly considered in resource economics spectra (e.g. resins) (2) leaf and wood decomposers having specific diet requirements and (3) temporal patterns of the decomposers' activity. Synthesis. Our study highlights the importance of considering the different ways by which invertebrate detritivores drive decomposition processes through time. Under the ongoing biodiversity decline, future research would benefit from a better understanding of the role of the dynamic interactions between detritivore activities and plant functional traits on the carbon turnover in ecosystems

    Tree species with conservative foliar nutrient status and strong phosphorus homeostasis are regionally abundant in subtropical forests

    Get PDF
    Foliar nitrogen (N) or phosphorus (P) status and their stoichiometric homeostasis are integral parts of the plant nutrient economy that determines the success of plant species in environments where N or P limits plant growth. Despite growing evidence for higher predictability of stoichiometric homeostasis of N (HN) than that of P (HP) on plant species abundance in temperate grasslands, no previous studies explicitly examined how foliar N and P status modulate the relationships between stoichiometric homeostasis and species distribution (regional species abundance) of woody plants, especially in P-limited (sub)tropical ecosystems. We hypothesized that species with a conservative foliar nutrient status but a higher HP (but not HN) would be regional abundant in P-limited forest. We measured foliar N (LNC) and P (LPC) contents of 54 woody species, community composition and soil N and P contents across 94 forest plots in Chinese subtropical forests. Then we evaluated the species' levels of N and P stoichiometric homeostasis and their regional abundance to test our hypotheses. HN and HP significantly increased with decreasing LNC and LPC. Foliar nutrient status positively correlated with the minimum values of both soil N and P contents, but only negatively associated with the maximum value of soil P content, indicating that conservative species can occupy a wider range of soil P- than N-based nutrient niche. Meanwhile, species abundance negatively correlated with LNC and LPC, and positively correlated with HN and HP. However, the structure equation model analysis showed that species abundance increased with decline of LNC but not yet with increased HN. In contrast, species abundance enhanced with increased HP and decreased LPC via HP, rather than directly with a decline of LPC. Synthesis. This study provides empirical evidence that species with conservative foliar nutrient status are more stable in terms of N and P stoichiometric homeostasis, and foliar N and P economy modulate species abundance distribution in different ways. Our results suggest that maintaining strong stoichiometric homeostasis of leaf P, while maintaining conservative economy of N, is a key physiochemical mechanism for shaping species abundance distribution in P-limited forests
    corecore