19 research outputs found

    Documenting the absence of bovine brucellosis in dairy cattle herds in the southern region of Malawi and the associated knowledge, attitudes and practices of farmers

    Get PDF
    Source at https://www.jsava.co.za/index.php/jsava/article/view/473.There is paucity of Brucella prevalence data in Malawi. For this reason, a cross-sectional study was conducted, from 06 January 2020 to 27 February 2020, to estimate the seroprevalence of brucellosis in dairy cattle herds amongst smallholder farmers, government and private dairy farms in the southern region. A total of 529 serum samples were screened for anti-Brucella antibodies using the Rose Bengal test (RBT) and a competitive enzyme-linked immunosorbent assay (cELISA). A pre-tested electronic (Epicollect tool, Wellcome Sanger Institute, United Kingdom) questionnaire was administered to 378 smallholder farmers to assess their knowledge, attitudes and practices towards brucellosis. Descriptive statistics were used to analyse the data in Microsoft Excel® and Statistical Package for Social Sciences (SPSS®) version 21. No animal tested positive for presence of anti-Brucella antibodies, indicating 0% prevalence (individual and herd levels). The majority (94.2%; 95% confidence interval [CI]: 91.8–96.5) of smallholder farmers had never heard about brucellosis. Furthermore, assisting during parturition without protective equipment (41.3%; 95% CI: 36.3–46.2) and using bulls for breeding (75%; 95% CI: 70.2–78.9) were amongst the common risk practices that were identified. We could not detect brucellosis in this study that indicates the disease could be very rare or even absent in the dairy cattle herds of the southern region of Malawi. However, further Brucella studies need to be conducted in cattle, small livestock, wildlife and humans to document the true status of brucellosis in the country. Brucellosis surveillance, monitoring, awareness and preventive measures are required to maintain this favourable situation. Keywords: bovine brucellosis (contagious abortion); dairy cattle herds; seroprevalence; knowledge; attitudes and practices; Malawi

    Identification of the plague reservoir in an endemic area of Zambia

    Get PDF
    Yersinia pestis, the bacterial agent of plague, is primarily a parasite of wild rodents that persists in permanent, discrete enzootic foci throughout the world. The disease is transmitted in humans by bites from fleas of wildlife rodent species. Therefore surveillance is the ultimate public health solution through plague detection in domestic dogs, other carnivores and wild rodents. The investigations of die-offs amongst plague-susceptible colonial rodents are also significant to determine the presence of Y. pestis in a susceptible population.This study details the identification of the plague reservoir in a suspected endemic area of Zambia. The study was undertaken through rodent investigation for the presence of Y. pestis. A total of 105 rodents were sampled routinely and during a suspected plague period. On dissection 4 (3.81%, 95% CI: 1.23−10.0) rodents sampled during an outbreak showed signs of spleen enlargement. The blood, liver, lymph nodes and spleen of each rodent were subjected to culture on 6% sheep blood agar and MaCconkey agar. Colonies obtained were identified as Y. pestis by colony morphologic features, biochemical profiles, mouse inoculation assay and polymerase chain reaction (PCR). The PCR primers used targeted the Y. pestis plasminogen activator gene, chromosomal ferric iron uptake regulation gene and the outer membrane protein B gene.The isolates were also subjected to antibiotic sensitivity tests using the disk diffusion method on Mueller-Hinton agar with sensitivity being observed with ampicillin, amoxicillin, chloramphenicol, gentamycin, streptomycin, tetracycline and trimethoprim-sulfamethoxazole. The findings, identifies a natural reservoir of Y. pestis in Zambia providing the public health officials with a definite host for the control strategy.</jats:p

    Serological and PCR investigation of Yersinia pestis in potential reservoir hosts from a plague outbreak focus in Zambia

    No full text
    Abstract Background Plague is a bacterial zoonotic disease, caused by Yersinia pestis. Rodents are the natural hosts with fleas as the vehicle of disease transmission. Domestic and wild dogs and cats have also been identified as possible disease hosts. In Zambia, plague outbreaks have been reported in the Southern and Eastern regions in the last 20 years. Based on these observations, Y. pestis could possibly be endemically present in the area. Methods To substantiate such possibility, sera samples were collected from rodents, shrews, dogs and cats for detection of antibodies against Fraction 1 gene (Fra1) of Y. pestis while organs from rodents and shrews, and fleas from both dogs and rodents were collected to investigate plasminogen activator gene (pla gene) of Y. pestis using ELISA and PCR respectively. Results A total of 369 blood samples were collected from domestic carnivores, shrews and domestic and peri-domestic rodents while 199 organs were collected from the rodents and shrews. Blood samples were tested for antibodies against Fra1 antigen using ELISA and 3% (5/165) (95% CI 0.99–6.93%) dogs were positive while all cats were negative. Of 199 sera from rodents and shrews, 12.6% (95% CI 8.30–17.98%) were positive for antibodies against Fra1 using anti-rat IgG secondary antibody while using anti-mouse IgG secondary antibody, 17.6% (95% CI 12.57–23.60%) were positive. PCR was run on the organs and 2.5% (95% CI 0.82–5.77%) were positive for plasminogen activator gene of Y. pestis and the amplicons were sequenced and showed 99% identity with Y. pestis reference sequences. All 82 fleas collected from animals subjected to PCR, were negative for pla gene. The specific rat-flea and dog-flea indices were 0.19 and 0.27 respectively, which were lower than the level required to enhance chances of the disease outbreak. Conclusions We concluded that plague was still endemic in the area and the disease may infect human beings if contact is enhanced between reservoir hosts and flea vectors. The lower specific rodent-flea Indices and absence of Y. pestis in the potential vectors were considered to be partly responsible for the current absence of plague outbreaks despite its presence in the sylvatic cycle

    Identification of risk factors associated with transmission of plague disease in eastern Zambia

    No full text
    Am. J. Trop. Med. Hyg., 97(3), 2017, pp. 826–830Plague is a fatal, primarily rodent-flea-borne zoonotic disease caused by Yersinia pestis. The identificatio of risk factors of plague was investigated through questionnaire interview and conducting focus group discussion (FGD) in Sinda and Nyimba districts of eastern Zambia. A total of 104 questionnaires were administered to individual respondents and 20 groups consisting of 181 discussants, which comprised FGD team in this study. The study revealed that trapping, transportation, and preparation of rodents for food exposed the community to rodent and their fleas suggesting that plague may have occurred primarily by either flea bites or contact with infected wild rodents. The study also revealed that most people in communities consumed rodents as part of their regular diet; therefore, contact with small wild mammals was a common practice. The mode of transportation of freshly trapped rodents, in particular, carcasses risked human to flea bites. Questionnaire respondents (75%) and FGD discussants (55%) indicated that trappers preferred to carry rodent carcasses in small bags, whereas 55.8% and 20% respectively, reported hunters carrying carcasses in their pockets. Carrying of carcass skewers on trappers’ shoulders was reported by 38.4% and 20% of individual respondents and FGD, respectively. All these activities were exposing humans to rodents and their fleas, the natural reservoirs and vectors of (.2 plague, respectively. This study also showed that there is a statistically significant = 4.6878, P < 0.05), between digging of rodents from their burrows and the presence of fleas on the hunter’s bodies or clothes, which exposes humans to potentially flea bites in an enzootic cycle

    Identification of risk factors associated with transmission of plague disease in eastern Zambia

    No full text
    Am. J. Trop. Med. Hyg., 97(3), 2017, pp. 826–830Plague is a fatal, primarily rodent-flea-borne zoonotic disease caused by Yersinia pestis. The identificatio of risk factors of plague was investigated through questionnaire interview and conducting focus group discussion (FGD) in Sinda and Nyimba districts of eastern Zambia. A total of 104 questionnaires were administered to individual respondents and 20 groups consisting of 181 discussants, which comprised FGD team in this study. The study revealed that trapping, transportation, and preparation of rodents for food exposed the community to rodent and their fleas suggesting that plague may have occurred primarily by either flea bites or contact with infected wild rodents. The study also revealed that most people in communities consumed rodents as part of their regular diet; therefore, contact with small wild mammals was a common practice. The mode of transportation of freshly trapped rodents, in particular, carcasses risked human to flea bites. Questionnaire respondents (75%) and FGD discussants (55%) indicated that trappers preferred to carry rodent carcasses in small bags, whereas 55.8% and 20% respectively, reported hunters carrying carcasses in their pockets. Carrying of carcass skewers on trappers’ shoulders was reported by 38.4% and 20% of individual respondents and FGD, respectively. All these activities were exposing humans to rodents and their fleas, the natural reservoirs and vectors of (.2 plague, respectively. This study also showed that there is a statistically significant = 4.6878, P < 0.05), between digging of rodents from their burrows and the presence of fleas on the hunter’s bodies or clothes, which exposes humans to potentially flea bites in an enzootic cycle

    Molecular, serological and epidemiological observations after a suspected outbreak of plague in Nyimba, eastern Zambia

    No full text
    Tropical DoctorPlague is a re-emerging zoonotic disease caused by the bacterium Yersinia pestis. The disease has caused periodic global devastation since the first outbreak in the 6th century.Twomonths after a suspected plague outbreak inNyimba district, sampleswere collected from94livestock(goats andpigs), 25 rodents, 6 shrews and33 fleas. Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) techniques were used to investigate the presence of Y. pestis, which showed that 16.0% (4/25) of rodents, 16.7% (1/6) of shrews (Crocidura spp) and 6.0% (5/83) of goats were positive for IgG antibodies against Fraction 1 antigen of Y. pestis. Plasminogen activator (Pla) gene (DNA) of Y. pestis was detected in five pools containing 36.4% (12/33) fleas collected from pigs (n¼4), goats (n¼5) and rodents (n¼3). The detection of Pla gene in fleas and IgG antibodies against Fraction1 antigen in rodents, shrews and goats suggest that Y. pestis had been present in the study area in the recent past

    Molecular, serological and epidemiological observations after a suspected outbreak of plague in Nyimba, eastern Zambia

    No full text
    Tropical DoctorPlague is a re-emerging zoonotic disease caused by the bacterium Yersinia pestis. The disease has caused periodic global devastation since the first outbreak in the 6th century.Twomonths after a suspected plague outbreak inNyimba district, sampleswere collected from94livestock(goats andpigs), 25 rodents, 6 shrews and33 fleas. Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) techniques were used to investigate the presence of Y. pestis, which showed that 16.0% (4/25) of rodents, 16.7% (1/6) of shrews (Crocidura spp) and 6.0% (5/83) of goats were positive for IgG antibodies against Fraction 1 antigen of Y. pestis. Plasminogen activator (Pla) gene (DNA) of Y. pestis was detected in five pools containing 36.4% (12/33) fleas collected from pigs (n¼4), goats (n¼5) and rodents (n¼3). The detection of Pla gene in fleas and IgG antibodies against Fraction1 antigen in rodents, shrews and goats suggest that Y. pestis had been present in the study area in the recent past

    Detection of Yersinia pestis DNA in human bubo aspirates in Tanzania

    No full text
    The use of molecular techniques to detect Yersinia pestis has enabled remarkable progress in the provision of necessary information on the occurrence of plague. In Tanzania, despite the long history of plague, DNA confirmation on the presence of Y. pestis in human specimens has not been done. This study was conducted in Mbulu district in Northern Tanzania where plague outbreaks have recently been reported. Nine human bubo specimens were investigated for Y. pestis plasminogen activator gene by using polymerase chain reaction (PCR), and two were found to be positive. The two positive amplicons, together with three previously obtained PCR positive rodent samples, were sequenced using a 3130 genetic analyzer and then compared with those available in GenBank by basic local alignment search tool (BLAST). All sequences obtained from both human and rodent samples showed 99% sequence similarity to Y. pestis plasmid pPCP1, detected from ancient DNA, confirming the presence of Y. pestis in humans that possibly sourced from rodents in Tanzania

    Detection of Yersinia pestis DNA in human bubo aspirates in Tanzania

    No full text
    The use of molecular techniques to detect Yersinia pestis has enabled remarkable progress in the provision of necessary information on the occurrence of plague. In Tanzania, despite the long history of plague, DNA confirmation on the presence of Y. pestis in human specimens has not been done. This study was conducted in Mbulu district in Northern Tanzania where plague outbreaks have recently been reported. Nine human bubo specimens were investigated for Y. pestis plasminogen activator gene by using polymerase chain reaction (PCR), and two were found to be positive. The two positive amplicons, together with three previously obtained PCR positive rodent samples, were sequenced using a 3130 genetic analyzer and then compared with those available in GenBank by basic local alignment search tool (BLAST). All sequences obtained from both human and rodent samples showed 99% sequence similarity to Y. pestis plasmid pPCP1, detected from ancient DNA, confirming the presence of Y. pestis in humans that possibly sourced from rodents in Tanzania
    corecore